Estimating a spatial autoregressive model with an endogenous spatial weight matrix*

Xi Qu ${ }^{\dagger}$
Antai College of Economics and Management, Shanghai Jiaotong University
Lung-fei Lee
Department of Economics, The Ohio State University

December 10, 2013

Abstract

The spatial autoregressive (SAR) model is a standard tool for analyzing data with spatial correlation. Conventional estimation methods rely on the key assumption that the spatial weight matrix is strictly exogenous, which would likely be violated in some empirical applications where spatial weights are determined by economic factors. This paper presents model specification and estimation of the SAR model with an endogenous spatial weight matrix. We provide three estimation methods: two-stage instrumental variable (2SIV) method, quasi-maximum likelihood estimation (QMLE) approach, and generalized method of moments (GMM). We establish the consistency and asymptotic normality of these estimators and investigate their finite sample properties by a Monte Carlo study.

JEL classification: C31; C51 Keywords: Spatial autoregressive model; Endogenous spatial weight matrix; 2SIV, QMLE, GMM

[^0]
1 Introduction

The spatial autoregressive (SAR) model is of great interest to economists because it has a game structure and can be interpreted as a reaction function. It is widely used in spatial econometrics and for modeling social networks. In spatial econometrics, the SAR model has been applied to cases where outcomes of a spatial unit at one location depend on those of its neighbors. The corresponding spatial weight matrix is a measure of connections among different locations. Consequently, the spatial dependence parameter provides a multiplier for the spillover effect. SAR models can also be used to model social networks. For example, a student's behavior (such as smoking or academic achievement) can be directly affected by his/her friends' behaviors. The weight matrix can then be constructed by using friendship relations, and the network (spatial) dependence parameter can be interpreted as the strength of peer effects. As measuring spillover and peer effects has strong policy implications, such as setting school policies, correct estimation of the spatial dependence parameter is important to both theory and practice.

Estimation methods for the SAR model with an exogenous spatial weight matrix has been well established in the literature: the maximum likelihood estimation (MLE) of Ord (1975) and Lee (2004); the instrumental variable (IV) methods of Anselin (1980) and Kelejian and Prucha (1998, 1999), and the generalized method of moments (GMM) of Lee (2007), Lee and Liu (2010), Lin and Lee (2010), and Liu et al. (2010). Consistency and asymptotic normality of these estimators are established under the assumption that the spatial weight matrix is strictly exogenous. This exogenous assumption may hold when spatial weights are constructed using predetermined geographic distances; for example, between different cities or countries. However, if "economic distance" such as the relative GDP or trade volume is used to construct the weight matrix, then it is very likely that these elements are correlated with the final outcome. Similarly, in the social network framework, some unobserved characteristics may affect both the friendship relationship and behavioral outcomes (Hsieh and Lee 2011). Therefore, in many applications, the exogenous spatial weight assumption might be violated.

However, due to the technical complication in estimating spatial models with an endogenous spatial weight matrix, to the best of our knowledge, so far no estimation method has been proposed for this case. In Pinkse and Slade (2010), they pointed out future directions of spatial econometrics. Endogeneity of spatial weights was among several problems they emphasized. They concluded that "many of these are still waiting for good solutions" and the endogeneity problem "can admittedly be challenging."

In this paper, we attempt to tackle the issue of endogenous spatial weights. By modeling explicitly the source of endogeneity, we obtain two sets of equations - one is for the SAR outcome, and the other is for entries of the spatial weight matrix. The disturbances in the SAR outcome equation and the error terms in the entry equation are allowed to be correlated. When their correlation coefficient is nonzero, the spatial weight matrix becomes endogenous. We focus on estimation issues for this type of SAR model. By imposing assumptions of conditional mean independence and homoskedasticity, we can overcome the endogeneity problem using the control function method. By exploring the unobservable control variables for endogeneity in the outcome SAR equation, we propose three estimation methods. The first estimation
method is a two-stage instrumental variables (2SIV) approach. In the first stage estimation, we consistently estimate the parameters of the entry equation. In the second stage, we replace the unobserved control variables in the outcome equation by the residuals of the entry equation, and then use the standard IV methods to estimate the SAR outcome equation. The second method we propose is the quasi-maximum likelihood estimation (QMLE), in which all the parameters can be jointly estimated via a normal likelihood function of the equation system even the disturbances in the model are not normally distributed. The third method is a GMM approach, in which an outcome equation with control variables for endogeneity provides additional quadratic moments for estimation.

The main aim of this paper is to show the consistency and asymptotic normality of aforementioned three estimators. The estimators involve statistics with linear-quadratic forms of disturbances, in which the quadratic matrix depends on the spatial weight matrix. As entries in the spatial weight matrix are nonlinear functions of disturbances, those statistics are not really of quadratic forms with nonstochastic quadratic matrices. Therefore, the standard asymptotic results for linear-quadratic forms do not directly apply to the situation here. Instead, we adopt the asymptotic inference under near-epoch dependence (NED) from Jenish and Prucha (2012) ${ }^{1}$ Our key work is to show the NED properties of random variables and functions involved in our estimators. To do that, we assume either the spatial weight matrix is sparse or the upper bound of its elements decreases as a power function of the physical distance. Therefore, in our setting, the physical distance plays an important role to constrain the magnitude of the spatial weights.

The rest of this paper is organized as follows. In Section 2, we present the model specification of the outcome equation and the entries of its spatial weight matrix. In Section 3, we propose the 2SIV, QML and GMM estimation methods for this model. Consistency and asymptotic normality of estimates from these methods are derived in Section 4. Some extensions with a generalized control function are discussed in Section 5. In Section 6, Monte Carlo simulations are provided to investigate finite sample properties of our proposed estimators and compare their performances with those under the exogenous spatial weight matrix assumption. Related expressions of the log quasi-likelihood function are collected in Appendix A. Proofs of all the lemmas, propositions, and theorems are given in Appendix B.

2 The model

2.1 Model specification

Following Jenish and Prucha (2009 \& 2012), we consider spatial processes located on a (possibly) unevenly spaced lattice $D \subseteq R^{d}, d \geq 1$. Asymptotic methods we employ are increasing domain asymptotics: growth of the sample is ensured by an unbounded expansion of the sample region as in Jenish and Prucha (2012) $\stackrel{ }{2}^{2}$

[^1]Assumption 1 The lattice $D \subset R^{d_{0}}$, $d_{0} \geq 1$, is infinitely countable. All elements in D are located at distances of at least $\rho_{0}>0$ from each other, i.e., $\forall i, j \in D: \rho_{i j} \geq \rho_{0}$, where $\rho_{i j}$ is the distance between locations i and j; w.l.o.g. we assume that $\rho_{0}=1$.

As our asymptotic analysis is based on inference under the spatial near-epoch dependence for increasing domain but not for infill asymptotics, physical distance plays an important role in keeping agents apart from each other. For the case of pure economic distance, if there were economic factors which keep agents apart, we might replace the "physical distance" in Assumption 1 by economic distance. In this regard, with Assumption 1 , our model will be more relevant for regional economic studies rather than social network ones. In regional issues, physical distance would definitely play a role.

Let $\left\{\left(\varepsilon_{i, n}, v_{i, n}\right) ; i \in D_{n}, n \in N\right\}$ be a triangular double array of real random variables defined on a probability space $(\Omega ; F ; P)$, where the index set $D_{n} \subset D$ is a finite set, $\left|D_{n}\right|$ is its cardinality, and D satisfies Assumption 1. Let

$$
\begin{equation*}
Z_{n}=X_{2 n} \Gamma+\varepsilon_{n} \tag{2.1}
\end{equation*}
$$

where $X_{2 n}$ is an $n \times k_{2}$ matrix with its elements $\left\{x_{2, i n} ; i \in D_{n}, n \in N\right\}$ being deterministic and bounded in absolute value for all i and n, Γ is a $k_{2} \times p_{2}$ matrix of coefficients, $\varepsilon_{n}=\left(\varepsilon_{1, n}, \ldots \varepsilon_{n, n}\right)^{\prime}$ is an $n \times p_{2}$ matrix of disturbances with $\varepsilon_{i, n}=\left(\varepsilon_{1, i n}, \ldots \varepsilon_{p_{2}, i n}\right)^{\prime}$ being p_{2} dimensional column vectors, and $Z_{n}=\left(z_{1, n}, \ldots z_{n, n}\right)^{\prime}$ is an $n \times p_{2}$ matrix with $z_{i, n}=\left(z_{1, i n}, \ldots z_{p_{2}, i n}\right)^{\prime} . W_{n}=\left(w_{i j, n}\right)^{3}$ is an $n \times n$ non-negative matrix with zero diagonals and its elements constructed by $Z_{n}: w_{i j, n}=h_{i j}\left(Z_{n}\right)$ for $i, j=1, \ldots, n ; i \neq j$, where $h(\cdot)$ is a bounded function $.^{4} Y_{n}=\left(y_{1, n} ., . ., y_{n, n}\right)^{\prime}$ is an $n \times 1$ vector from a cross-sectional SAR model specified as

$$
\begin{equation*}
Y_{n}=\lambda W_{n} Y_{n}+X_{1 n} \beta+V_{n} \tag{2.2}
\end{equation*}
$$

where $X_{1 n}$ is an $n \times k_{1}$ matrix with its elements $\left\{x_{1, i n} ; i \in D_{n}, n \in N\right\}$ being deterministic and bounded in absolute value for all i and $n, V_{n}=\left(v_{1, n}, \ldots, v_{n, n}\right)^{\prime}, \lambda$ is a scalar, and $\beta=\left(\beta_{1}, \ldots, \beta_{k_{1}}\right)^{\prime}$ is a $k_{1} \times 1$ vector of coefficients.

2.2 Model interpretation

We consider n agents in an area, each endowed with a predetermined location i. Any two agents are separated away by a distance of at least 1 . Due to some competition or spillover effects, each agent i has an outcome $y_{i, n}$ directly affected by its neighbors' outcomes $y_{j, n}^{\prime} s$. The outcome equation is $y_{i, n}=$ $\lambda \sum_{j \neq i} w_{i j, n} y_{j, n}+x_{1, i n}^{\prime} \beta+v_{i, n}$, where the spatial weight $w_{i j, n}$ is a measure of relative strength of linkage

[^2]between agents i and j, and the spatial coefficient λ provides a multiplier for the spillover effects. However, the spatial weight $w_{i j, n}$ is not predetermined but depends on some observable random variable Z_{n}. We can think of $z_{i, n}$ as some economic variables at location i such as GDP, consumption, economic growth rate, etc, which influence strength of links across units.

This specification has been used in the literature, and it may introduce endogeneity into the spatial weight matrix. For example, Anselin and Bera (1997) provided several examples in economic applications on the use of weights based on "economic" distance. In Case et al. (1993), weights (before row normalization) of the form $w_{i j, n}=1 /\left|z_{i, n}-z_{j, n}\right|$ were specifically suggested, where $z_{i, n}$ and $z_{j, n}$ are observations on "meaningful" socioeconomic characteristics. In Conway and Rork (2004), they used migration flow data to construct a spatial weight matrix. Another example is in Crabbé and Vandenbussche (2008), where in addition to the physical distance, spatial weight matrices were constructed by inverse trade share and inverse distance between GDP per capita.

2.3 Source of endogeneity

We have the following moment assumption.
Assumption 2 The error terms $v_{i, n}$ and $\varepsilon_{i, n}$, have a joint distribution: $\left(v_{i, n}, \varepsilon_{i, n}^{\prime}\right)^{\prime} \sim$ i.i.d. $\left(0, \Sigma_{v \varepsilon}\right)$, where $\Sigma_{v \varepsilon}=\left(\begin{array}{cc}\sigma_{v}^{2} & \sigma_{v \varepsilon}^{\prime} \\ \sigma_{v \epsilon} & \Sigma_{\varepsilon}\end{array}\right)$ is positive definite, σ_{v}^{2} is a scalar variance, covariance $\sigma_{v \varepsilon}=\left(\sigma_{v \varepsilon_{1}}, \ldots \sigma_{v \varepsilon_{p_{2}}}\right)^{\prime}$ is a p_{2} dimensional vector, and Σ_{ε} is a $p_{2} \times p_{2}$ matrix. The $\sup _{i, n} E\left|v_{i, n}\right|^{4+\delta_{\varepsilon}}$ and $\sup _{i, n} E\left\|\varepsilon_{i, n}\right\|^{4+\delta_{\varepsilon}}$ exist for some $\delta_{\varepsilon}>0$. Furthermore, $E\left(v_{i, n} \mid \varepsilon_{i, n}\right)=\varepsilon_{i, n}^{\prime} \delta \operatorname{and} \operatorname{Var}\left(v_{i, n} \mid \varepsilon_{i, n}\right)=\sigma_{\xi}^{2}$.

The endogeneity of W_{n} comes from the correlation between $v_{i, n}$ and $\varepsilon_{i, n}$. If $\sigma_{v \varepsilon}$ is zero, the spatial weight matrix W_{n} might be treated as strictly exogenous and we can apply conventional methodology of SAR models for estimation. However, if $\sigma_{v \varepsilon}$ is not zero, W_{n} becomes an endogenous spatial weights matrix.

From the two conditional moments assumptions in Assumption 2, we have the p_{2} dimensional column vector $\delta=\Sigma_{\varepsilon}^{-1} \sigma_{v \varepsilon}$ and the scalar $\sigma_{\xi}^{2}=\sigma_{v}^{2}-\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \sigma_{v \varepsilon}$. Denote $\xi_{n}=V_{n}-\varepsilon_{n} \delta$, then its mean conditional on ε_{n} is zero and its conditional variance matrix is $\sigma_{\xi}^{2} I_{n}$. In particular, ξ_{n} are uncorrelated with the terms of ε_{n} and the variance of ξ_{n} is $\sigma_{\xi 0}^{2} I_{n}$. The outcome equation 2.2 becomes

$$
\begin{equation*}
Y_{n}=\lambda W_{n} Y_{n}+X_{1 n} \beta+\left(Z_{n}-X_{2 n} \Gamma\right) \delta+\xi_{n} \tag{2.3}
\end{equation*}
$$

with $E\left(\xi_{i, n} \mid \varepsilon_{i, n}\right)=0$ and $E\left(\xi_{i, n}^{2} \mid \varepsilon_{i, n}\right)=\sigma_{\xi}^{2}$; and $\xi_{i, n}$'s are i.i.d. across i. Our subsequent asymptotic analysis will mainly rely on equation (2.3), where $\left(Z_{n}-X_{2 n} \Gamma\right)$ are control variables to control the endogeneity of W_{n}. Assumption 2 is relatively general without imposing a specific distribution on disturbances as it is based on only conditional moments restrictions.

In the special case that $\left(v_{i, n}, \varepsilon_{i, n}^{\prime}\right)^{\prime}$ has a jointly normal distribution, then $v_{i, n} \mid \varepsilon_{i, n} \sim N\left(\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \varepsilon_{i, n}, \sigma_{v}^{2}-\right.$ $\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \sigma_{v \varepsilon}$) and ξ_{n} is independent of ε_{n} in equation 2.1.

3 Estimation methods

3.1 The two-stage IV estimation

In the first stage, we estimate $Z_{n}=X_{2 n} \Gamma+\varepsilon_{n}$ by the ordinary least squares (OLS) method, so $\widehat{\Gamma}=$ $\left(X_{2 n}^{\prime} X_{2 n}\right)^{-1} X_{2 n}^{\prime} Z_{n}$. Then, in the second stage by substituting $\widehat{\Gamma}$ for Γ in 2.3), we have

$$
\begin{equation*}
Y_{n}=\lambda W_{n} Y_{n}+X_{1 n} \beta+\left(Z_{n}-X_{2 n} \widehat{\Gamma}\right) \delta+\widehat{\xi}_{n} \tag{3.1}
\end{equation*}
$$

where $\widehat{\xi}_{n}=\xi_{n}+X_{2 n}(\widehat{\Gamma}-\Gamma) \delta=\xi_{n}+P_{n} \varepsilon_{n} \delta$ with $P_{n}=X_{2 n}\left(X_{2 n}^{\prime} X_{2 n}\right)^{-1} X_{2 n}^{\prime}$. Since $Z_{n}-X_{2 n} \widehat{\Gamma}=P_{n}^{\perp} Z_{n}=P_{n}^{\perp} \varepsilon_{n}$ with $P_{n}^{\perp}=I_{n}-P_{n}, 3.1$ can be explicitly rewritten as

$$
\begin{equation*}
Y_{n}=\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right) \kappa+\left(\xi_{n}+P_{n} \varepsilon_{n} \delta\right) \tag{3.2}
\end{equation*}
$$

where $\kappa=\left(\begin{array}{lll}\lambda & \beta^{\prime} & \delta^{\prime}\end{array}\right)^{\prime}$. For estimation, with the control variables $\left(Z_{n}-X_{2 n} \Gamma\right)$ added in 2.3 or $P_{n}^{\perp} Z_{n}$ in 3.2, W_{n} can be treated as predetermined or exogenous. However, $W_{n} Y_{n}$ remains endogenous in 2.3) and (3.2). So for an IV estimation, we need instruments for $W_{n} Y_{n}$. Let Q_{n} be an $n \times m$ matrix of IVs, then a 2SIV estimator of κ with Q_{n} will be

$$
\widehat{\kappa}=\left[\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} Q_{n}\left(Q_{n}^{\prime} Q_{n}\right)^{-1} Q_{n}^{\prime}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} Q_{n}\left(Q_{n}^{\prime} Q_{n}\right)^{-1} Q_{n}^{\prime} Y_{n}
$$

As the composite error $\left(\xi_{n}+P_{n} \varepsilon_{n} \delta\right)$ is not homogeneous as its variance matrix is $\Pi_{n}=\sigma_{\xi 0}^{2} I_{n}+\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0} P_{n}$, we may also consider a generalized 2SIV (G2SIV), which is

$$
\begin{aligned}
\widehat{\kappa}_{G}= & {\left[\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} \Pi_{n}^{-1} Q_{n}\left(Q_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\right)^{-1} Q_{n}^{\prime} \Pi_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]^{-1} } \\
& \cdot\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} \Pi_{n}^{-1} Q_{n}\left(Q_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\right)^{-1} Q_{n}^{\prime} \Pi_{n}^{-1} Y_{n} .
\end{aligned}
$$

In practice, as Π_{n} involves unknown parameters, they need to be consistently estimated by some initial estimates so as to have a consistent $\widehat{\Pi}_{n}$, and a feasible G2SIV. The details of such a construction are in Section 4.4.

3.2 The quasi-maximum likelihood estimation

As in White (1982), based on the i.i.d. disturbances $\left(v_{i, n}, \varepsilon_{i, n}^{\prime}\right)^{\prime} \sim\left(0, \Sigma_{v \varepsilon}\right)$ with $\Sigma_{v \varepsilon}=\left(\begin{array}{cc}\sigma_{v}^{2} & \sigma_{v \varepsilon}^{\prime} \\ \sigma_{v \varepsilon} & \Sigma_{\varepsilon}\end{array}\right)$, we can directly write down the \log quasi-likelihood function under a normal distributional specification as:

$$
\begin{align*}
\ln L_{n} & =-n \ln (2 \pi)-\frac{n}{2} \ln \left|\Sigma_{v \varepsilon}\right|+\ln \left|S_{n}(\lambda)\right| \tag{3.3}\\
& -\frac{1}{2}\left[\left(S_{n}(\lambda) Y_{n}-X_{1 n} \beta\right),\left(v e c\left(Z_{n}-X_{2 n} \Gamma\right)\right)^{\prime}\right]\left(\Sigma_{v \varepsilon}^{-1} \otimes I_{n}\right)\binom{S_{n}(\lambda) Y_{n}-X_{1 n} \beta}{v e c\left(Z_{n}-X_{2 n} \Gamma\right)},
\end{align*}
$$

where $S_{n}(\lambda)=I_{n}-\lambda W_{n}$. Alternatively, by the partitioned quadratic formulation that

$$
\left(v_{i, n}, \varepsilon_{i, n}^{\prime}\right) \Sigma_{v \varepsilon}^{-1}\left(v_{i, n}, \varepsilon_{i, n}^{\prime}\right)^{\prime}=\left(v_{i, n}-\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \varepsilon_{i, n}\right)^{\prime}\left(\sigma_{v}^{2}-\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \sigma_{v \varepsilon}\right)^{-1}\left(v_{i, n}-\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \varepsilon_{i, n}\right)+\varepsilon_{i, n}^{\prime} \Sigma_{\varepsilon}^{-1} \varepsilon_{i, n},
$$

the \log quasi-likelihood function can also be written as

$$
\begin{align*}
\ln L_{n}(\theta) & =-n \ln (2 \pi)-\frac{n}{2} \ln \sigma_{\xi}^{2}+\ln \left|S_{n}(\lambda)\right|-\frac{n}{2} \ln \left|\Sigma_{\varepsilon}\right|-\frac{1}{2} \sum_{i=1}^{n}\left(z_{i, n}^{\prime}-x_{2,, i n}^{\prime} \Gamma\right) \Sigma_{\varepsilon}^{-1}\left(z_{i, n}-\Gamma^{\prime} x_{2, i n}\right) \tag{3.4}\\
& -\frac{1}{2 \sigma_{\xi}^{2}}\left[S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta\right]^{\prime}\left[S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta\right] .
\end{align*}
$$

where $\theta=\left(\lambda, \beta^{\prime}, v e c(\Gamma)^{\prime}, \sigma_{\xi}^{2}, \alpha^{\prime}, \delta^{\prime}\right)^{\prime}$ with α being a J-dimensional column vector of distinct elements in Σ_{ε}, $\delta=\Sigma_{\varepsilon}^{-1} \sigma_{v \varepsilon}$, and $\sigma_{\xi}^{2}=\sigma_{v}^{2}-\sigma_{v \varepsilon}^{\prime} \Sigma_{\varepsilon}^{-1} \sigma_{v \varepsilon}$. The QMLE $\widehat{\theta}=\arg \max _{\theta \in \Theta} \ln L_{n}(\theta)$. A necessary condition is $\frac{\partial \ln L_{n}(\widehat{\theta})}{\partial \theta}=0$, where the first order derivatives of the \log quasi-likelihood function are listed in Appendix A.

3.3 The generalized method of moments estimation

Let X_{n} collect different column vectors in $X_{1 n}$ and $X_{2 n}$. For the GMM estimation, as X_{n} is strictly exogenous and $E\left(\xi_{i, n} \mid \varepsilon_{i, n}\right)=0$, a possible set of linear moments for estimation can be

$$
E\left(X_{n}^{\prime} \varepsilon_{n}\right)=0, E\left(\left(M_{n} X_{n}\right)^{\prime} \xi_{n}\right)=0, \text { and } E\left(\left(M_{n} Z_{n}\right)^{\prime} \xi_{n}\right)=0
$$

where M_{n} is an $n \times n$ matrix which can be constructed from I_{n} and W_{n}. For example, a finite number of matrices M_{n} can be either $I_{n}, W_{n}^{\prime m_{1}} W_{n}^{m_{2}}, G_{n}, G_{n}^{\prime}$, and $G_{n}^{\prime} G_{n}$, where $G_{n}=W_{n}\left(I_{n}-\lambda_{0} W_{n}\right)^{-1}$, for some nonnegative integers m_{1} and m_{2}. In addition to linear moments, we have quadratic moments $E\left[\xi_{n}^{\prime}\left(M_{n}-\right.\right.$ $\left.\left.\operatorname{tr}\left(M_{n}\right) I_{n} / n\right) \xi_{n}\right]=0$ from the assumption $E\left(\xi_{i, n}^{2} \mid \varepsilon_{i, n}\right)=\sigma_{\xi}^{2} \square^{5}$

Let Q_{n} be an $n \times m^{*}$ matrix with elements of $M_{n} Z_{n}$ and $M_{n} X_{n}$, then the corresponding empirical moments can be:
(1) $X_{n}^{\prime}\left(Z_{n}-X_{2 n} \Gamma\right)$;
(2) $Q_{n}^{\prime}\left[Y_{n}-\lambda W_{n} Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta\right]$; and
(3) $\left[Y_{n}-\lambda W_{n} Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta\right]^{\prime}\left[M_{n}-\operatorname{tr}\left(M_{n}\right) I_{n} / n\right]^{\prime}\left[Y_{n}-\lambda W_{n} Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta\right]$.

With several constructed $M_{j n}$ matrices, $j=1, \ldots, m$, in place of a single M_{n} matrix, denote the matrices $P_{j n}=M_{j n}-\operatorname{tr}\left(M_{j n}\right) I_{n} / n$ for $j=1, \ldots, m$, and $\theta^{G}=\left(\lambda, \beta^{\prime}, v e c(\Gamma)^{\prime}, \delta\right)^{\prime}$, then the set of moment functions

[^3]for the GMM estimation is
$$
g_{n}\left(\theta^{G}\right)=\left(\xi_{n}^{\prime}\left(\theta^{G}\right) P_{1 n} \xi_{n}\left(\theta^{G}\right), \ldots, \xi_{n}^{\prime}\left(\theta^{G}\right) P_{m n} \xi_{n}\left(\theta^{G}\right), \xi_{n}^{\prime}\left(\theta^{G}\right) Q_{n}, v e c\left(\varepsilon_{n}^{\prime}\left(\theta^{G}\right) X_{n}\right)^{\prime}\right)^{\prime}
$$
where $\theta^{G}=\left(\lambda, \beta^{\prime}, \operatorname{vec}(\Gamma)^{\prime}, \delta^{\prime}\right)^{\prime}, \xi_{n}\left(\theta^{G}\right)=S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta$ and $\varepsilon_{n}\left(\theta^{G}\right)=Z_{n}-X_{2 n} \Gamma$. Our GMM estimator of θ^{G} is derived from $\hat{\theta}_{n}^{G}=\arg \min _{\theta \in \Theta} g_{n}^{\prime}\left(\theta^{G}\right) a_{n}^{\prime} a_{n} g_{n}\left(\theta^{G}\right)$, where $a_{n}^{\prime} a_{n}$ is a positive definite matrix that may depend on the data.

4 Asymptotic properties of estimators

4.1 Key statistics

The 2SIV
For the 2SIV estimator $\widehat{\kappa}$ and G2SIV estimator $\widehat{\kappa}_{G}$,

$$
\begin{aligned}
\widehat{\kappa}-\kappa_{0} & =\left[\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} Q_{n}\left(Q_{n}^{\prime} Q_{n}\right)^{-1} Q_{n}^{\prime}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]^{-1} \\
& \cdot\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} Q_{n}\left(Q_{n}^{\prime} Q_{n}\right)^{-1} Q_{n}^{\prime}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\kappa}_{G}-\kappa_{0}= & {\left[\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} \Pi_{n}^{-1} Q_{n}\left(Q_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\right)^{-1} Q_{n}^{\prime} \Pi_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]^{-1} } \\
& \cdot\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} \Pi_{n}^{-1} Q_{n}\left(Q_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\right)^{-1} Q_{n}^{\prime} \Pi_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right),
\end{aligned}
$$

where the subscript 0 on parameters denotes their true values. As $\Pi_{n}^{-1}=\left(\sigma_{\xi 0}^{2} I_{n}+\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0} P_{n}\right)^{-1}=\frac{1}{\sigma_{\xi 0}^{2}}\left(I_{n}-\right.$ $\frac{\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0}}{\sigma_{\xi 0}^{2}+\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0}} P_{n}$), for the consistency and asymptotic distribution of $\widehat{\kappa}$ and $\widehat{\kappa}_{G}$, terms we need to analyze are $Q_{n}^{\prime} Q_{n}, Q_{n}^{\prime} X_{2 n}, Q_{n}^{\prime}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} \varepsilon_{n}\right), X_{2 n}^{\prime}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} \varepsilon_{n}\right), Q_{n}^{\prime} \xi_{n}$, and $Q_{n}^{\prime} P_{n} \varepsilon_{n} \delta_{0}$. Here $W_{n} Y_{n}=$ $W_{n}\left(I_{n}-\lambda_{0} W_{n}\right)^{-1}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}+\xi_{n}\right)=G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}+\xi_{n}\right)$, where $G_{n}(\lambda)=W_{n}\left(I_{n}-\lambda W_{n}\right)^{-1}$ with $G_{n}=G_{n}\left(\lambda_{0}\right)$. Let X_{n} be an $n \times k$ matrix collecting all distinct column vectors in $X_{1 n}$ and $X_{2 n}$. Then, for the choice of the IV matrix Q_{n}, its column vectors can be linear combinations of $X_{n}, W_{n} X_{n}, W_{n}^{2} X_{n}, \ldots$, and columns in $P_{n}^{\perp} Z_{n}$. For example, if we choose $Q_{n}=\left(G_{n} X_{n}, G_{n} Z_{n}, X_{n}, Z_{n}\right)$, which is an optimal choice of IV matrix as derived in the following section, then terms which need to be analyzed for consistency via some law of large numbers (LLN) are

$$
\begin{aligned}
& \frac{1}{n} X_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n} \\
& \frac{1}{n} X_{n}^{\prime} G_{n} \xi_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} \xi_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n} \xi_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} G_{n} \xi_{n}, \text { and } \frac{1}{n} \varepsilon_{n}^{\prime} G_{n}^{\prime} G_{n} \xi_{n}
\end{aligned}
$$

For asymptotic distribution of the estimator, we need to consider the stochastic convergence in distribution
via central limit theorem (CLT) for some of those terms after proper rescaling.

The QMLE

To show the consistency of the QMLE $\widehat{\theta}$, first we need to show the uniform convergence of the log quasilikelihood function to its expectation, i.e., $\sup _{\theta \in \Theta} \frac{1}{n}\left|\ln L_{n}(\theta)-E\left(\ln L_{n}(\theta)\right)\right|=o_{p}(1)$. It is sufficient to show the uniform convergence of the sample averages of $\ln \left|S_{n}(\lambda)\right|$ and $\xi_{n}(\theta)^{\prime} \xi_{n}(\theta)$, where $\xi_{n}(\theta)=\left[S_{n}(\lambda) Y_{n}-\right.$ $\left.X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta\right]$. Note that

$$
\begin{aligned}
& \xi_{n}(\theta)=S_{n}(\lambda) S_{n}^{-1}\left(X_{1 n} \beta_{0}+V_{n}\right)-X_{1 n} \beta-\left[X_{2 n}\left(\Gamma_{0}-\Gamma\right)+\varepsilon_{n}\right] \delta \\
= & \left(\lambda_{0}-\lambda\right) G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)+X_{1 n}\left(\beta_{0}-\beta\right)-X_{2 n}\left(\Gamma_{0}-\Gamma\right) \delta+\varepsilon_{n}\left(\delta_{0}-\delta\right)+\left[I_{n}-\left(\lambda-\lambda_{0}\right) G_{n}\right] \xi_{n},
\end{aligned}
$$

where $S_{n}=I_{n}-\lambda_{0} W_{n}$. From the Taylor expansion,

$$
\frac{1}{n} \ln \left|S_{n}(\lambda)\right|=\frac{1}{n} \ln \left|I_{n}-\lambda W_{n}\right|=-\frac{1}{n} \sum_{i=1}^{n}\left[\sum_{l=1}^{\infty} \frac{\lambda^{l}}{l}\left(W_{n}^{l}\right)_{i i}\right]
$$

Hence, in the log quasi-likelihood function, the terms which need to be analyzed are

$$
\begin{aligned}
& \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} X_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n} \frac{1}{n} \xi_{n}^{\prime} G_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} \xi_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} \xi_{n}^{\prime} G_{n}^{\prime} \varepsilon_{n} \\
& \frac{1}{n} \xi_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \xi_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \xi_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} \xi_{n}^{\prime} G_{n}^{\prime} G_{n} \xi_{n}, \text { and } \frac{1}{n} \sum_{i=1}^{n}\left[\sum_{l=1}^{\infty} \frac{\lambda^{l}}{l}\left(W_{n}^{l}\right)_{i i}\right]
\end{aligned}
$$

for consistency via LLN, and some properly rescaled terms for their asymptotic distributions via CLT.

The GMM

The GMM is based on the first two moments of ξ_{n} and ε_{n}. Some elements in $g_{n}\left(\theta^{G}\right)$ have similar expressions as those in the 2SIV estimator and QMLE. Some have new features to analyze, such as

$$
\begin{aligned}
& \frac{1}{n} X_{n}^{\prime} \bar{M}_{n}^{\prime} X_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} \bar{M}_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} \xi_{n}^{\prime} \bar{M}_{n}^{\prime} \xi_{n}, \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} \bar{M}_{n}^{\prime} X_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n}^{\prime} \bar{M}_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} \xi_{n}^{\prime} G_{n}^{\prime} \bar{M}_{n}^{\prime} \xi_{n} \\
& \frac{1}{n} X_{n}^{\prime} G_{n}^{\prime} \bar{M}_{n}^{\prime} G_{n} X_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n}^{\prime} \bar{M}_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} \xi_{n}^{\prime} G_{n}^{\prime} \bar{M}_{n}^{\prime} G_{n} \xi_{n}, \frac{1}{n} X_{n}^{\prime} \bar{M}_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} \bar{M}_{n}^{\prime} \xi_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} \bar{M}_{n}^{\prime} \xi_{n} \\
& \frac{1}{n} X_{n}^{\prime} G_{n} \bar{M}_{n}^{\prime} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} G_{n} \bar{M}_{n}^{\prime} \xi_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n} \bar{M}_{n}^{\prime} \xi_{n}, \frac{1}{n} X_{n}^{\prime} G_{n} \bar{M}_{n}^{\prime} G_{n} \varepsilon_{n}, \frac{1}{n} X_{n}^{\prime} G_{n} \bar{M}_{n}^{\prime} G_{n} \xi_{n}, \frac{1}{n} \varepsilon_{n}^{\prime} G_{n} \bar{M}_{n}^{\prime} G_{n} \xi_{n}
\end{aligned}
$$

where $\bar{M}_{n}=M_{n}-\operatorname{tr}\left(M_{n}\right) I_{n} / n$ and M_{n} is either G_{n}, G_{n}^{\prime}, or $G_{n}^{\prime} G_{n}$ in our example if we choose $Q_{n}=$ $\left(G_{n} X_{n}, G_{n} Z_{n}, X_{n}, Z_{n}\right)$. In general, M_{n} can be $I_{n}, W_{n}^{\prime} m_{1} W_{n}^{m_{2}}, G_{n}, G_{n}^{\prime}$, and $G_{n}^{\prime} G_{n}$ for any nonnegative integers m_{1} and m_{2}.

4.2 Assumptions and topological structures

To analyze terms in above key statistics, we need additional assumptions and topological structures.
Assumption 3 3.1). For any i, j, and n, the spatial weight $w_{i j, n} \geq 0$, $w_{i i, n}=0$, and $\left\|W_{n}\right\|_{\infty}=c_{w}<\infty$. 3.2). The parameter $\theta=\left(\lambda, \beta^{\prime}, v e c(\Gamma)^{\prime}, \sigma_{\xi}^{2}, \alpha^{\prime}, \delta^{\prime}\right)^{\prime}$ is in a compact set Θ in the Euclidean space $\mathbf{R}^{k_{\theta}}$. Here $k_{\theta}=k_{1}+2+k_{2} p_{2}+p_{2}+J$, where k_{1} is the dimension of β, p_{2} is the dimension of $\sigma_{v \varepsilon}, k_{2} p_{2}$ is the number of parameters in Γ, and J is the dimension of α with α being the vector of all distinct elements in Σ_{ε}. The true parameter θ_{0} is contained in the interior of Θ. Furthermore, $\sup _{\lambda \in \Lambda}|\lambda| c_{w}<1$, where Λ is the parameter space for λ.
3.3). Let the $k \times n$ matrix X_{n} collect all distinct column vectors in $X_{1 n}$ and $X_{2 n}$. All elements in X_{n} are deterministic and bounded in absolute value. $\lim _{n \rightarrow \infty} \frac{1}{n} X_{n}^{\prime} X_{n}$ exists and is nonsingular.

Assumption 4 We consider two cases of W_{n} :
4.1) Case 1: The spatial weight $w_{i j, n}=h_{i j}\left(z_{i, n}, z_{j, n}\right)$ for $i \neq j$, where $h_{i j}(\cdot)$'s are non-negative, uniformly bounded functions of some observable variable $Z_{n} .0 \leq w_{i j, n} \leq c_{1} \rho_{i j}{ }^{-c_{3} d_{0}}$ for some $0 \leq c_{1}$ and $c_{3}>3^{6}$, Furthermore, there exist at most $K(K \geq 1)$ columns of W_{n} that the column sum exceeds c_{w}, where K is a fixed number that does not depend n.
4.2) Case 2: The spatial weight $w_{i j, n}=0$ if $\rho_{i j}>\rho_{c}$, i.e., there exists a threshold $\rho_{c}>1$ and if the geographic distance exceeds ρ_{c}, then the weight is zero. For $i \neq j, w_{i j, n}=h_{i j}\left(z_{i, n}, z_{j, n}\right)$ or $w_{i j, n}=$ $h_{i j}\left(z_{i, n}, z_{j, n}\right) / \sum_{\rho_{i k} \leq \rho_{c}} h_{i k}\left(z_{i, n}, z_{k, n}\right)$, where $h_{i j}(\cdot)$'s are non-negative, uniformly bounded functions.

Assumptions 3 and 4 provide the essential features of the weights matrix and parameters for the model. Assumptions 3.1) and 3.2) are standard assumptions in the spatial econometrics literature to limit the spatial correlation in a manageable degree. Assumption 3.3) requires that all distinct regressors in $X_{1 n}$ and $X_{2 n}$ are linearly independent. Note that Assumption 3.3) allows the special case that $X_{1 n}$ and $X_{2 n}$ are the same. Due to interactions of W_{n} and Y_{n}, and nonlinearity of Z_{n} in W_{n}, as contrary to a linear simultaneous equation system, exclusive restrictions on regressors for identification may not be needed. From Assumption 4. we can see that the geographic distance plays an important role in constraining magnitudes of our spatial weights. The spatial weight of two locations would be larger if they were closer to each other or when their economic indices were more similar, but their weights would become smaller when two units are further apart. Assumption 4.1) allows the situation that all agents are spatially correlated but the spatial weight decreases sufficiently fast at a certain rate as physical distances increase. Symmetry is not imposed on the spatial weight matrix. If W_{n} is indeed symmetric, then by Assumption 3.1), the column sum will also be uniformly bounded by c_{w}. In that case, the second part on the column sum norm condition in Assumption 4.1) will not be needed. However, in general, W_{n} can be asymmetric, i.e., $h_{i j}\left(z_{i, n}, z_{j, n}\right) \neq h_{j i}\left(z_{j, n}, z_{i, n}\right)$. For an asymmetric W_{n}, the second part of Assumption 4.1) limits the number of columns which have large magnitudes relative

[^4]to the row sum norm. For example, big countries may have great impact on small countries, but those small countries may have little or zero influence on big countries. In this example, we have some "stars" whose row sums are bounded by c_{w}, while their column sums can be much larger. Assumption 4.1) assumes that the number of such stars can only be finite and bounded. Assumption 4.2), also imposed in Qu and Lee (2012), allows for a row-normalized spatial weight matrix: $w_{i j, n}=h_{i j}\left(z_{i, n}, z_{j, n}\right) / \sum_{\rho_{i k} \leq \rho_{c}} h_{i k}\left(z_{i, n}, z_{k, n}\right)$. In this case, $w_{i j, n}$ might have agents linked in an area, which could be wide, but once the geographic distance between two agents exceeds a threshold, the two units are not spatially interacted.

Our asymptotic analysis of the proposed estimators will be based on inference under NED. The following notion of NED for random fields is from Jenish and Prucha (2012).

Definition 1 For any random vector $Y,\|Y\|_{p}=\left[E|Y|^{p}\right]^{1 / p}$ denotes its L_{p}-norm where $|Y|$ is the Euclidean norm of Y. Denote $\mathcal{F}_{i, n}(s)$ as a σ-field generated by the random vectors $\varsigma_{j, n}$'s located within the ball $B_{i}(s)$, which is a ball centered at the location i with a radius s in a d_{0}-dimensional Euclidean space D.

Definition 2 (NED) Let $T=\left\{T_{i, n}, i \in D_{n}, n \geq 1\right\}$ and $\varsigma=\left\{\varsigma_{i, n}, i \in D_{n}, n \geq 1\right\}$ be random fields with $\left\|T_{i, n}\right\|_{p}<\infty, p \geq 1$, where $D_{n} \subset D$ and $\left|D_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$, and let $d=\left\{d_{i, n}, i \in D_{n}, n \geq 1\right\}$ be an array of finite positive constants. Then the random field T is said to be L_{p}-near-epoch dependent on the random field ς if $\left\|T_{i, n}-E\left(T_{i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq d_{i, n} \varphi(s)$ for some sequence $\varphi(s) \geq 0$ such that $\lim _{s \rightarrow \infty} \varphi(s)=0$. The $\varphi(s)$, which is, without loss of generality, assumed to be non-increasing, is called the NED coefficient, and the $d_{i, n}$'s are called NED scaling factors. T is said to be $L_{p}-N E D$ on ς of size $-\alpha$ if $\varphi(s)=O\left(s^{-\mu}\right)$ for some $\mu>\alpha>0$. Furthermore, if $\sup _{n} \sup _{i \in D_{n}} d_{i, n}<\infty$, then T is said to be uniformly $L_{p}-N E D$ on ς. If $\varphi(s)=O\left(\rho^{s}\right)$, where $0<\rho<1$, then T is called geometrically $L_{p}-N E D$ on ς.

4.3 Asymptotic inference of key statistics

Let $\varsigma_{i, n}^{*}$ be a vector-valued function of the error term $\varsigma_{i, n}=\left(\varepsilon_{i, n}, \xi_{i, n}\right)$ and the observed X_{n}, i.e., $\varsigma_{i, n}^{*}=$ $f_{i}\left(\varepsilon_{i, n}, \xi_{i, n}, X_{n}, \theta_{0}\right)$. As X_{n} is deterministic, $\varsigma_{i, n}^{*}$ is purely determined by the location i, independent of error terms associated with any other places. Let $M_{n}=A_{n}^{\prime} B_{n}$, where A_{n} and B_{n} are either $W_{n}^{m_{1}}$ or $G_{n}^{m_{2}}$ with m_{1} and m_{2} being finite non-negative integers. Denote $\varsigma_{n}^{*}=\left(\varsigma_{1 n}^{*}, \ldots \varsigma_{n, n}^{*}\right)$. The NED property of the statistic $a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b$ for some constant vectors a and b with $\varsigma_{i, n}$ as the basis for the NED is established in Appendix C. 1 under Assumption 4.1) for the case 1 and in Appendix C. 2 for case 2 under Assumption 4.2). Then based on the asymptotic inference under NED, we have the following LLN.

Proposition 1 Under Assumptions 1, 3.1), and 4, suppose $\sup _{i, n}\left\|\varsigma_{i, n}^{*}\right\|_{4}<\infty$, then $\frac{1}{n} E\left|a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b\right|=$ $O(1)$ and $\frac{1}{n}\left[a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b-E\left(a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b\right)\right]=o_{p}(1)$, where a and b are conformable vectors of constants.

Furthermore, with the compactness of the parameter space of θ, we have the following ULLN.
Corollary 1 Under Assumptions 1, 3.1), 3.2), and 4, suppose $\sup _{i, n}\left\|\varsigma_{i, n}^{*}\right\|_{4}<\infty$, then
$\frac{1}{n} a^{\prime} \varsigma_{n}^{*}(\theta)^{\prime} G_{n}^{m_{1}}(\lambda)^{\prime} G_{n}^{m_{2}}(\lambda) \varsigma_{n}^{*}(\theta) b$ is stochastic equicontinuous and

$$
\sup _{\theta \in \Theta} \frac{1}{n}\left|a^{\prime} \varsigma_{n}^{*}(\theta)^{\prime} G_{n}^{m_{1}}(\lambda)^{\prime} G_{n}^{m_{2}}(\lambda) \varsigma_{n}^{*}(\theta) b-E\left(a^{\prime} \varsigma_{n}^{*}(\theta)^{\prime} G_{n}^{m_{1}}(\lambda)^{\prime} G_{n}^{m_{2}}(\lambda) \varsigma_{n}^{*}(\theta) b\right)\right|=o_{p}(1)
$$

where $\varsigma_{i, n}^{*}(\theta)=f_{i}\left(\varepsilon_{i, n}, \xi_{i, n}, X_{n}, \theta\right)$ with θ entering f_{i} polynomially, m_{1} and m_{2} are finite non-negative integers, and a and b are conformable vectors of constants.

Denote

$$
R_{n}=\sum_{j=1}^{m}\left[a_{j}^{\prime} \varsigma_{n}^{* \prime} M_{j n} \varsigma_{n}^{*} b_{j}-E\left(a_{j}^{\prime} \varsigma_{n}^{* \prime} M_{j n} \varsigma_{n}^{*} b_{j}\right)\right]=\sum_{i=1}^{n} r_{i, n}
$$

where each $M_{j n}$ matrix, $j=1, \ldots, m$ can be expressed as $M_{j n}=A_{j n}^{\prime} B_{j n}$ with $A_{j n}$ and $B_{j n}$ being either $W_{n}^{m_{1}}$ or $G_{n}^{m_{2}}$. Denote $\sigma_{R n}^{2}$ as the variance of R_{n} and $r_{i, n}=\sum_{j=1}^{m} \sum_{k=1}^{n}\left[a_{j}^{\prime} \varsigma_{i, n}^{*} M_{j n}(i, k) \varsigma_{k, n}^{*} b_{j}-\right.$ $\left.E\left(a_{j}^{\prime} \varsigma_{i, n}^{*} M_{j n}(i, k) \varsigma_{k, n}^{*} b_{j}\right)\right]$. Then $R_{n}=\sum_{i=1}^{n} r_{i, n}$ and $\sigma_{R n}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} r_{i, n}\right)$. We have the following CLT for R_{n}.

Proposition 2 Under Assumptions 1, 2, 3.1), and 4, suppose $\sup _{i, n}\left\|s_{i, n}^{*}\right\|_{4+\delta_{\varepsilon}}<\infty$ for some $\delta_{\varepsilon}>0$, and $\inf _{n} \frac{1}{n} \sigma_{R n}^{2}>0$, then $R_{n} / \sigma_{R n} \xrightarrow{d} N(0,1)$.

The LLN in Proposition 1 and the CLT in Proposition 2 provide the essential tools for asymptotic analysis of the consistency and asymptotic normality of the 2SIV, QML and GMM estimators in our model.

4.4 Consistency and asymptotic normality of estimators

The 2SIV
To show the consistency and asymptotic normality of the 2SIV and G2SIV estimators, in addition to the convergence of each separated term, we need some rank conditions on relevant limiting matrices.

Assumption 5 5.1) Columns of Q_{n} are from $M_{n} q_{n}$ and $M_{n} Z_{n}$, where q_{n} is a strictly exogeneous vector and $M_{n}=A_{n}^{\prime} B_{n}$, in which A_{n} and B_{n} are either $W_{n}^{m_{1}}$ or $G_{n}^{m_{2}}$ with m_{1} and m_{2} being finite non-negative integers.
5.2) $\lim _{n \rightarrow \infty} \frac{1}{n} E\left(Q_{n}^{\prime} Q_{n}\right)$ exists and is nonsingular;
5.3) $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[Q_{n}^{\prime}\left(G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, \varepsilon_{n}\right)\right]$ has full column rank.

It is of interest to note that endogeneity of W_{n} in our model may provide parameter identification via the IV estimation, even if there are no relevant regressors $X_{1 n}$ in the SAR equation. In the SAR with an exogenous W_{n}, if there are no regressors $X_{1 n}$ in the equation, i.e., $\beta_{0}=0$, its corresponding limiting matrix $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[Q_{n}^{\prime}\left(G_{n} X_{1 n} \beta_{0}, X_{1 n}\right)\right]=\left[0, \lim _{n \rightarrow \infty} \frac{1}{n} Q_{n}^{\prime} X_{1 n}\right]$ would not have full column rank. However, with endogeneity, $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[Q_{n}^{\prime}\left(G_{n} \varepsilon_{n} \delta_{0}, X_{1 n}, \varepsilon_{n}\right)\right]$ may have full column rank.

Theorem 1 Under Assumptions 1.5, the 2SIV estimator $\widehat{\kappa}$ and the G2SIV estimator $\widehat{\kappa}_{G}$ are consistent estimators of κ_{0}. Furthermore, $\sqrt{n}\left(\widehat{\kappa}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{I V}\right)$ and $\sqrt{n}\left(\widehat{\kappa}_{G}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{G I V}\right)$, where

$$
\begin{aligned}
\Sigma_{I V} & =\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n}\left(U_{n}^{\prime} A_{q n} U_{n}\right)^{-1} U_{n}^{\prime} A_{q n} \Pi_{n} A_{q n} U_{n}\left(U_{n}^{\prime} A_{q n} U_{n}\right)^{-1} \text { and } \\
\Sigma_{G I V} & =\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n}\left[U_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\left(Q_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\right)^{-1} Q_{n}^{\prime} \Pi_{n}^{-1} U_{n}\right]^{-1}
\end{aligned}
$$

with $U_{n}=\left[G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, \varepsilon_{n}\right]$ and $A_{q n}=Q_{n}\left(Q_{n}^{\prime} Q_{n}\right)^{-1} Q_{n}^{\prime}$.
By the Cauchy-Schwarz inequality, $U_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\left(Q_{n}^{\prime} \Pi_{n}^{-1} Q_{n}\right)^{-1} Q_{n}^{\prime} \Pi_{n}^{-1} U_{n} \leq U_{n}^{\prime} \Pi_{n}^{-1} U_{n}$ and the " $=$ " holds if the columns of U_{n} are in the linear space spanned by the columns of Q_{n}. Therefore, if column vectors in the IV matrix Q_{n} consist of $G_{n} X_{n}, G_{n} Z_{n}, X_{n}$, and Z_{n}, then the best G2SIV estimator based on this optimal Q_{n} has the smallest limiting variance $\Sigma_{B G I V}=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n}\left(U_{n}^{\prime} \Pi_{n}^{-1} U_{n}\right)^{-1}$.

However, the best G2SIV estimator is not feasible because $\sigma_{\xi 0}^{2}$ and $\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0}$ in Π_{n} as well as λ_{0} in G_{n} are unknown. In practice, we may use $X_{n} W_{n} X_{n}, W_{n} Z_{n}$, etc. as IV matrices to get an initial consistent estimate $\widehat{\kappa}$ by 2 SIV, and then using $G_{n}(\widehat{\lambda}) X_{n}, G_{n}(\widehat{\lambda}) Z_{n}, X_{n}$, and Z_{n} as new IVs and substituting $\widehat{\Pi}_{n}=\widehat{\sigma}_{\xi}^{2} I_{n}+\widehat{\delta}^{\prime} \widehat{\Sigma}_{\varepsilon} \widehat{\delta} P_{n}$, where $\widehat{\Sigma}_{\varepsilon}=\frac{1}{n} Z_{n}^{\prime} P_{n}^{\perp} Z_{n}$ and $\widehat{\sigma}_{\xi}^{2}=\frac{1}{n}\left(Y_{n}-\widehat{\lambda} W_{n} Y_{n}-X_{1 n} \widehat{\beta}-P_{n}^{\perp} Z_{n} \widehat{\delta}\right)^{\prime}\left(Y_{n}-\widehat{\lambda} W_{n} Y_{n}-X_{1 n} \widehat{\beta}-P_{n}^{\perp} Z_{n} \widehat{\delta}\right)$, for Π_{n} to obtain the feasible best G2SIV estimator $\widehat{\kappa}_{F B G I V}$. The following theorem shows that $\widehat{\kappa}_{F B G I V}$ has the same limiting distribution as the best G2SIV estimator.

Theorem 2 Under Assumptions 155, the feasible best G2SIV estimator $\widehat{\kappa}_{F B G I V}$ is a consistent estimator of κ_{0} and $\sqrt{n}\left(\widehat{\kappa}_{F B G I V}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{B G I V}\right)$.

The QMLE

Assumption 6 Either a) $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\left(G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, \varepsilon_{n}\right)^{\prime}\left(G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, \varepsilon_{n}\right)\right]$ exists and is nonsingular, or b) $S_{n}(\lambda)^{\prime} S_{n}(\lambda)$ is not proportional to $S_{n}^{\prime} S_{n}$ with probability one whenever $\lambda \neq \lambda_{0}$.

Assumption 6 is an identification condition for the model. Assumption 6a) is a rank condition, which is similar to Assumption 5.3) for the 2SIV. Assumption 60) explores the i.i.d. disturbances of the model so that the reduced form of Y_{n} has a unique variance structure. A sufficient condition that guarantees the linear independence of $S_{n}(\lambda)^{\prime} S_{n}(\lambda)$ with $S_{n}^{\prime} S_{n}$ is that the matrices $I_{n},\left(W_{n}+W_{n}^{\prime}\right)$ and $W_{n}^{\prime} W_{n}$ are linearly independent $\sqrt[7]{7}$ Assumption 6 also implies that the information matrix of this model is nonsingular as shown in Claim C.3.2.

With identification, the uniform convergence of $\sup _{\theta \in \Theta} \frac{1}{n}\left|\ln L_{n}(\theta)-E \frac{1}{n} \ln L_{n}(\theta)\right| \xrightarrow{p} 0$ and the equicontinuity of $\lim _{n \rightarrow \infty} \frac{1}{n} E \ln L_{n}\left(\theta_{0}\right)$ together imply the consistency of the QMLE.

[^5]Theorem 3 Under Assumptions 1.4, and 6, the $Q M L E \widehat{\theta}$ is a consistent estimator of θ_{0} and $\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \xrightarrow{d}$ $N\left(0, \Sigma_{Q M L}\right)$, where

$$
\Sigma_{Q M L}=\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(\frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta} \frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta^{\prime}}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1}
$$

Expressions for each term of $\Sigma_{Q M L}$ are in Appendix A. In the special case that $\left(v_{i, n}, \varepsilon_{i, n}^{\prime}\right)^{\prime}$ is jointly normal, QMLE becomes MLE and the asymptotic variance is simply $-\left(\lim _{n \rightarrow \infty} E\left(\frac{1}{n} \frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1}$.

The GMM

One advantage of the GMM approach compared to the QML method is that the GMM estimator can be computationally simpler as the determinant of the Jacobian transformation, $\left|I_{n}-\lambda W_{n}\right|$, needs not to be evaluated whereas with QMLE it does. To prove the consistency and asymptotic normality of the GMM estimator, we impose following assumptions.

Assumption 7 7.1) The $n \times m^{*} I V$ matrix Q_{n} has its columns from $M_{n} q_{n}$ and $M_{n} Z_{n}$, where q_{n} is a strictly exogeneous vector and $M_{n}=A_{n}^{\prime} B_{n}$, in which A_{n} and B_{n} are either $W_{n}^{m_{1}}$ or $G_{n}^{m_{2}}$ with m_{1}, and m_{2} being non-negative integers. The $n \times n$ square matrices $P_{j n}=M_{j n}-\operatorname{tr}\left(M_{j n}\right) I_{n} / n(j=1, \ldots, m$ for some finite $m)$ have zero trace.
7.2) $\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} a_{n} g_{n}\left(\theta^{G}\right)=0$ has a unique root at θ_{0}^{G} in Θ^{G}.
7.3) $\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} a_{n} D_{n}$ exists and has the full rank $\left(1+k_{1}+k_{2} p_{2}+p_{2}\right)$, where $D_{n}=-\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \frac{\partial g_{n}\left(\theta_{0}^{G}\right)}{\partial \theta^{G I}}$.

For simplicity, 7.2) in Assumption 7 is a high level sufficient condition for identification. Given specific moments as suggested in section 3.3, it is possible to have Assumption 7.2) satisfied with some sufficient conditions on Q_{n} and $P_{j n}$'s as in Lee (2007). The simplest sufficient condition is the ability to construct consistent IV estimation of the model equations by some proper IV matrix Q_{n}, as in Assumption 5 .

By applying Propositions 1 and 2, we have the following theorem.
Theorem 4 Under Assumptions 14, and 7, the GMM estimator $\widehat{\theta}_{n}^{G}=\arg \min _{\theta \in \Theta} g_{n}^{\prime}\left(\theta^{G}\right) a_{n}^{\prime} a_{n} g_{n}\left(\theta^{G}\right)$ is a consistent estimator of θ_{0}^{G}, and $\sqrt{n}\left(\widehat{\theta}_{n}^{G}-\theta_{0}^{G}\right) \xrightarrow{d} N\left(0, \Sigma_{G M M}\right)$, where

$$
\Sigma_{G M M}=\lim _{n \rightarrow \infty} \frac{1}{n}\left(D_{n}^{\prime} a_{n}^{\prime} a_{n} D_{n}\right)^{-1} D_{n}^{\prime} a_{n}^{\prime} a_{n} \Omega_{n}\left(\theta_{0}^{G}\right) a_{n}^{\prime} a_{n} D_{n}\left(D_{n}^{\prime} a_{n}^{\prime} a_{n} D_{n}\right)^{-1}
$$

with $D_{n}=-\frac{1}{n} \frac{\partial\left(g_{n}\left(\theta_{0}^{G}\right)\right)}{\partial \theta^{G I}}$ and $\Omega_{n}\left(\theta_{0}^{G}\right)=\operatorname{Var}\left(g_{n}\left(\theta_{0}^{G}\right)\right)$.
Detailed expressions of D_{n} and $\Omega_{n}\left(\theta_{0}^{G}\right)$ are in C.5 and C.6 of Appendix C. By the generalized CauchySchwarz inequality, the optimal weighting matrix for the GMM estimation with the moment functions $g_{n}\left(\theta^{G}\right)$
is $\left[\Omega_{n}\left(\theta_{0}^{G}\right)\right]^{-1}$. Then, with a consistent estimator $\widehat{\Omega}_{n}$ of $\Omega_{n}\left(\theta_{0}^{G}\right)$, the feasible "optimal" GMM is obtained from $\min _{\theta \in \Theta} g_{n}^{\prime}\left(\theta^{G}\right) \widehat{\Omega}_{n}^{-1} g_{n}\left(\theta^{G}\right)$ and it will have the smallest asymptotic variance $\left(\lim _{n \rightarrow \infty} \frac{1}{n} D_{n}^{\prime}\left[\Omega_{n}\left(\theta_{0}^{G}\right)\right]^{-1} D_{n}\right)^{-1} \underbrace{8}$

4.5 Estimated variance-covariance matrix of estimators

For QMLE, all parameters in θ are jointly estimated, so directly we have a consistent estimator of $\sigma_{\xi_{0}}^{2}$. For 2SIV and GMM methods, we do not estimate $\sigma_{\xi_{0}}^{2}$ directly and therefore need to construct a consistent estimator for it. Expressions for the estimated variance-covariance matrix of $\Sigma_{I V}$ and $\Sigma_{B G I V}$ are based on the following result.
Claim 1 Suppose $\left(\widehat{\lambda}, \widehat{\beta}^{\prime}, \widehat{\gamma}^{\prime}, \widehat{\delta}\right)^{\prime}$ is a consistent estimator of $\left(\lambda_{0}, \beta_{0}^{\prime}, \gamma_{0}^{\prime}, \delta_{0}\right)^{\prime}$, then $\widehat{\sigma}_{\xi}^{2}=\frac{1}{n} \widehat{\xi}_{n}^{\prime} \widehat{\xi}_{n}$ is a consistent estimator of $\sigma_{\xi_{0}}^{2}$, where $\widehat{\xi}_{n}=S_{n}(\widehat{\lambda}) Y_{n}-X_{1 n} \widehat{\beta}-\left(Z_{n}-X_{2 n} \widehat{\Gamma}\right) \widehat{\delta}$. Furthermore, if $\left(\lambda_{0}, \beta_{0}^{\prime}, \gamma_{0}^{\prime}, \delta_{0}\right)^{\prime}$ is replaced with $\left(\widehat{\lambda}, \widehat{\beta}^{\prime}, \widehat{\gamma}^{\prime}, \widehat{\delta}\right)^{\prime}$ and ε_{n} with $\widehat{\varepsilon}_{n}=Z_{n}-X_{2 n} \widehat{\Gamma}$ in $\Sigma_{I V}$ and $\Sigma_{B G I V}$ to obtain, respectively, empirical estimates $\widehat{\Sigma}_{I V}$ and $\widehat{\Sigma}_{B G I V}$, then $\widehat{\Sigma}_{I V} \xrightarrow{p} \Sigma_{I V}$ and $\widehat{\Sigma}_{B G I V} \xrightarrow{p} \Sigma_{B G I V}$.

Based on this Claim, the estimated asymptotic variance-covariance matrices for the 2SIV estimator $\widehat{\kappa}$ and the feasible best G2SIV estimator $\widehat{\kappa}_{F B G I V}$ are, respectively,

$$
\frac{1}{n} \widehat{\Sigma}_{I V}=\left(\widehat{U}_{n}^{\prime} A_{q n} \widehat{U}_{n}\right)^{-1} \widehat{U}_{n}^{\prime} A_{q n} \widehat{\Pi}_{n} A_{q n} \widehat{U}_{n}\left(\widehat{U}_{n}^{\prime} A_{q n} \widehat{U}_{n}\right)^{-1} \text { and } \frac{1}{n} \widehat{\Sigma}_{B G I V}=\left(\widehat{U}_{n}^{\prime} \widehat{\Pi}_{n}^{-1} \widehat{U}_{n}\right)^{-1}
$$

where

$$
\begin{aligned}
\widehat{U}_{n} & =\left[G_{n}(\widehat{\lambda})\left(X_{1 n} \widehat{\beta}+P_{n}^{\perp} Z_{n} \widehat{\delta}\right), X_{1 n}, P_{n}^{\perp} Z_{n}\right] \text { and } \widehat{\Pi}_{n}=\widehat{\sigma}_{\xi}^{2} I_{n}+\widehat{\delta}^{\prime} \widehat{\Sigma}_{\varepsilon} \widehat{\delta} P_{n} \text { with } \\
\widehat{\Sigma}_{\varepsilon} & =\frac{1}{n} Z_{n}^{\prime} P_{n}^{\perp} Z_{n} \text { and } \widehat{\sigma}_{\xi}^{2}=\frac{1}{n}\left(Y_{n}-\widehat{\lambda} W_{n} Y_{n}-X_{1 n} \widehat{\beta}-P_{n}^{\perp} Z_{n} \widehat{\delta}\right)^{\prime}\left(Y_{n}-\widehat{\lambda} W_{n} Y_{n}-X_{1 n} \widehat{\beta}-P_{n}^{\perp} Z_{n} \widehat{\delta}\right)
\end{aligned}
$$

For $\Sigma_{Q M L}$ and $\Sigma_{G M M}$, we have similar terms as those in $\Sigma_{I V}$, but also special ones involving the third and fourth orders of $\xi_{i n}$, such as $\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right) G_{i i, n}\right]$ and $\frac{1}{n} \sum_{i=1}^{n} E\left(\xi_{i, n}^{4} G_{i i, n}\right)$. But they can be estimated by empirical moments with estimated coefficients.

Claim 2 If θ_{0} is replaced with a consistent estimator $\widehat{\theta}, \varepsilon_{n}$ with $\widehat{\varepsilon}_{n}=Z_{n}-X_{2 n} \widehat{\Gamma}$, and $\xi_{\text {in }}$ with $\widehat{\xi}_{\text {in }}$, where $\widehat{\xi}_{i n}$ is the ith element of $\widehat{\xi}_{n}=S_{n}(\widehat{\lambda}) Y_{n}-X_{1 n} \widehat{\beta}-\left(Z_{n}-X_{2 n} \widehat{\Gamma}\right) \widehat{\delta}$, in $\Sigma_{Q M L}$ and $\Sigma_{G M M}$ to obtain, respectively, empirical estimates $\widehat{\Sigma}_{Q M L}$ and $\widehat{\Sigma}_{G M M}$, then $\widehat{\Sigma}_{Q M L} \xrightarrow{p} \Sigma_{Q M L}$ and $\widehat{\Sigma}_{G M M} \xrightarrow{p} \Sigma_{G M M}$.

5 Extension to nonlinear conditional mean

Our previous analysis is based on the linear conditional mean $E\left(v_{i, n} \mid \varepsilon_{i, n}\right)=\varepsilon_{i, n} \delta$ in Assumption 2. As a possible generalization, the linear conditional mean can be relaxed to a polynomial function with little

[^6]additional complication for our proposed estimators. For simplicity, assume $p_{2}=1$ and $E\left(v_{i, n} \mid \varepsilon_{i, n}\right)=$ $\sum_{m=1}^{\bar{m}} \varepsilon_{i, n}^{m} \delta_{m}$, where \bar{m} is a finite positive integer. For an $n \times 1$ vector $b=\left(b_{i}\right), b^{m}$ denotes an $n \times 1$ vector with the i th element as b_{i}^{m}. Then equation (2.3) can be generalized to
$$
Y_{n}=\lambda W_{n} Y_{n}+X_{1 n} \beta+\sum_{m=1}^{\bar{m}}\left(Z_{n}-X_{2 n} \gamma\right)^{m} \delta_{m}+\xi_{n}
$$

The log quasi-likelihood function is

$$
\begin{aligned}
\ln L_{n}(\theta) & =\ln \left[f\left(Z_{n}\right) f\left(Y_{n} \mid Z_{n}\right)\right]=-n \ln (2 \pi)-\frac{n}{2} \ln \sigma_{\xi}^{2} \sigma_{\varepsilon}^{2}+\ln \left|S_{n}(\lambda)\right|-\frac{1}{2 \sigma_{\varepsilon}^{2}}\left(Z_{n}-X_{2 n} \gamma\right)^{\prime}\left(Z_{n}-X_{2 n} \gamma\right) \\
& -\frac{1}{2 \sigma_{\xi}^{2}}\left(S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\sum_{m=1}^{\bar{m}}\left(Z_{n}-X_{2 n} \gamma\right)^{m} \delta_{m}\right)^{\prime}\left(S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\sum_{m=1}^{m}\left(Z_{n}-X_{2 n} \gamma\right)^{m} \delta_{m}\right) .
\end{aligned}
$$

And the possible set of linear moments for GMM estimation is $E\left(X_{n}^{\prime} \varepsilon_{n}\right)=0, E\left(X_{n}^{\prime} \xi_{n}\right)=0, E\left(Z_{n}^{\prime} \xi_{n}\right)=0$, $E\left(\left(G_{n} X_{n}\right)^{\prime} \xi_{n}\right)=0$, and $E\left(\left(G_{n}\left(Z_{n}-X_{2 n} \gamma\right)^{m}\right)^{\prime} \xi_{n}\right)=0$ for $m=1, \ldots, \bar{m}$. Note that

$$
\begin{aligned}
& \xi_{n}(\theta)=S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\sum_{m=1}^{\bar{m}}\left(Z_{n}-X_{2 n} \gamma\right)^{m} \delta_{m} \\
= & S_{n}(\lambda) S_{n}^{-1}\left(X_{1 n} \beta_{0}+\sum_{m=1}^{\bar{m}} \varepsilon_{n}^{m} \delta_{m 0}+\xi_{n}\right)-X_{1 n} \beta-\sum_{m=1}^{\bar{m}}\left[X_{2 n}\left(\gamma_{0}-\gamma\right)+\varepsilon_{n}\right]^{m} \delta_{m} \\
= & \left(\lambda_{0}-\lambda\right) G_{n}\left(X_{1 n} \beta_{0}+\sum_{m=1}^{\bar{m}} \varepsilon_{n}^{m} \delta_{m 0}\right)+X_{1 n}\left(\beta_{0}-\beta\right)+\sum_{m=1}^{m} \varepsilon_{n}^{m}\left(\delta_{m 0}-\delta_{m}\right) \\
& -\sum_{m=1}^{\bar{m}}\left\{\left[X_{2 n}\left(\gamma_{0}-\gamma\right)+\varepsilon_{n}\right]^{m}-\varepsilon_{n}^{m}\right\} \delta_{m}+\left[I_{n}-\left(\lambda-\lambda_{0}\right) G_{n}\right] \xi_{n} .
\end{aligned}
$$

Then in this general setting, the new additional statistics involve higher orders of ε_{n}, e.g., $\frac{1}{n} \varepsilon_{n}^{l_{1} \prime} M_{n} \varepsilon_{n}^{l_{2}}$ for l_{1}, $l_{2},=1, \ldots, \bar{m}$. But Claims C.1.6, C.1.7, C.2.5 and C.2.6 are general enough to ensure the NED property of these statistics, so the 2SIV, QMLE and GMM approaches can still be applied here.

6 Monte Carlo Simulations

6.1 Data generating process

In this section, we evaluate four estimation methods of a SAR with an endogenous W_{n}. The data generating process (DGP) is

$$
Y_{n}=\left(I_{n}-\lambda W_{n}\right)^{-1}\left(X_{n} \beta+V_{n}\right)
$$

where $x_{i, n}=\left(x_{i 1, n}, x_{i 2, n}\right)^{\prime}$ with $x_{i 1, n}=1$ and $x_{i 2, n} \sim N(0,1) ; \beta_{1}=\beta_{2}=1$. Here we let $X_{1 n}=X_{2 n}=X_{n}$. The endogenous, row-normalized $W_{n}=\left(w_{i j, n}\right)$ is constructed as follows:

1. Generate bivariate normal random variables $\left(v_{i, n}, \varepsilon_{i, n}\right)$ from i.i.d $N\left(0,\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\right)$ as disturbances in the outcome equation and the spatial weight equation.
2. Construct the spatial weight matrix as the Hadamard product $W_{n}=W_{n}^{d} \circ W_{n}^{e}$, i.e., $w_{i j, n}=w_{i j, n}^{d} w_{i j, n}^{e}$, where W_{n}^{d} is a predetermined matrix based on geographic distance: $w_{i j, n}^{d}=1$ if the two locations are neighbors and otherwise $0 ; W_{n}^{e}$ is a matrix based on economic similarity: $w_{i j, n}^{e}=1 /\left|z_{i, n}-z_{j, n}\right|$ if $i \neq j$ and $w_{i i, n}^{e}=0$, where elements of Z_{n} is generated by $z_{i, n}=1+0.8 x_{i 2, n}+\varepsilon_{i, n}$.
3. Row-normalize W_{n}.

For the predetermined W_{n}^{d}, we use four examples. First, the U.S. states spatial weight matrix $W S(49 \times 49)$, based on the contiguity of the 48 contiguous states and D.C.; second, the Toledo spatial weight matrix $W O(98 \times 98)$, based on the 5 nearest neighbors of 98 census tracts in Toledo, Ohio; third, the Iowa "Adjacency" spatial weight matrix $W A(361 \times 361)$, based on the adjacency of 361 school districts in Iowa in 2009; and lastly, the Iowa "County" spatial weight matrix $W C(361 \times 361)$, based on whether the school districts are in the same county in Iowa in 2009.

In the simulation, we compare four different estimation methods: conventional IV, 2SIV, conventional MLE of SAR, and the MLE in section 2.4. The conventional method refers to the case of treating W_{n} as exogenous. We refer to these four methods as IV, 2SIV, SAR, and MLE in tables. Here 2SIV and MLE correctly treat W_{n} as endogenous, but the conventional IV and SAR methods only estimate the outcome equation (Z_{n} equation is not estimated) since they treat W_{n} as exogenous. Of particular interest, we want to see how large the bias is for the two conventional estimation methods when W_{n} is endogenous. To generate different degrees of endogeneity, we choose correlation coefficients $\rho=0.2,0.5$, and 0.8 . We also let the spatial correlation to be $\lambda=0.2$ and 0.4 to investigate how the spatial correlation parameter affects estimates. 1000 replications are carried out for each setting ${ }^{9}$.

6.2 Monte Carlo results

Tables 1-6 report the empirical mean of each estimator, the empirical mean of its estimated standard error based on the corresponding asymptotic variance-covariance matrix (in parentheses), and the empirical standard deviation of the estimator (in brackets) based on 1000 replications using $W S, W O, W A$, or $W C$ as the predetermined spatial weight matrices. In each table, the upper panel shows the results for $\lambda=0.2$ and the lower panel for $\lambda=0.4$. To see how the different estimation methods behave under different degrees of endogeneity, we conduct three sets of simulations: results for weak endogeneity ($\rho=0.2$) are in Tables 1 and 2, medium endogeneity ($\rho=0.5$) in Tables 3 and 4, and strong endogeneity ($\rho=0.8$) in Tables 5 and 6.

[^7]Table 1: Estimates from spatial weight matrices with weak endogeneity (small sample)

$\rho=0.2$	WS($n=49$)				WO($n=98$)			
$\lambda=0.2$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\widehat{\lambda}$	0.1229	0.1922	0.1391	0.1808	0.0784	0.1749	0.1241	0.1777
	(0.2519)	(0.2422)	(0.1362)	(0.1306)	(0.2085)	(0.1986)	(0.1142)	(0.1087)
	[0.2560]	[0.2659]	[0.1293]	[0.1286]	[0.2043]	[0.2095]	[0.1027]	[0.1010]
$\widehat{\beta}_{1}$	1.0993	1.0036	1.0808	1.0234	1.1680	1.0382	1.1048	1.0327
	(0.3743)	(0.3632)	(0.2324)	(0.2266)	(0.2993)	(0.2873)	(0.1834)	(0.1774)
	[0.3717]	[0.3773]	[0.2283]	[0.2324]	[0.3029]	[0.3044]	[0.1792]	[0.1832]
$\widehat{\beta}_{2}$	0.9759	0.9815	0.9884	0.9915	0.9675	0.9852	0.9810	0.9906
	(0.1604)	(0.1606)	(0.1505)	(0.1505)	(0.1173)	(0.1182)	(0.1103)	(0.1105)
	[0.1684]	[0.1686]	[0.1588]	[0.1593]	[0.1228]	[0.1230]	[0.1158]	[0.1172]
$\widehat{\gamma}_{1}$		1.0044		1.0044		1.0020		1.0020
		(0.1419)		(0.1390)		(0.1013)		(0.1002)
		[0.1498]		[0.1498]		[0.1056]		[0.1056]
$\widehat{\gamma}_{2}$		0.7987		0.7987		0.8038		0.8038
		(0.1533)		(0.1502)		(0.1102)		(0.1090)
		[0.1604]		[0.1604]		[0.1108]		[0.1108]
$\widehat{\delta}$		0.2012		0.1996		0.1994		0.1998
		(0.1545)		(0.1416)		(0.1072)		(0.1003)
		[0.1616]		[0.1523]		[0.1093]		[0.1023]
$\lambda=0.4$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\hat{\lambda}$	0.3198	0.3857	0.3287	0.3736	0.2792	0.3717	0.3159	0.3742
	(0.2402)	(0.2305)	(0.1253)	(0.1184)	(0.2015)	(0.1883)	(0.1046)	(0.0977)
	[0.2537]	[0.2593]	[0.1229]	[0.1262]	[0.2028]	[0.2029]	[0.0994]	[0.1005]
$\widehat{\beta}_{1}$	1.1386	1.0173	1.1273	1.0453	1.2201	1.0557	1.1525	1.0487
	(0.4614)	(0.4456)	(0.2676)	(0.2571)	(0.3742)	(0.3519)	(0.2117)	(0.2008)
	[0.4784]	[0.4799]	[0.2705]	[0.2684]	[0.3876]	[0.3822]	[0.2141]	[0.2105]
$\widehat{\beta}_{2}$	0.9803	0.9815	0.9924	0.9929	0.9729	0.9855	0.9836	0.9912
	(0.1600)	(0.1598)	(0.1509)	(0.1503)	(0.1158)	(0.1159)	(0.1100)	(0.1096)
	[0.1670]	[0.1670]	[0.1587]	[0.1587]	[0.1207]	[0.1204]	[0.1150]	[0.1158]
$\widehat{\gamma}_{1}$		1.0044		1.0044		1.0020		1.0020
		(0.1419)		(0.1390)		(0.1013)		(0.1002)
		[0.1498]		[0.1498]		[0.1056]		[0.1056]
$\widehat{\gamma}_{2}$		0.7987		0.7987		0.8038		0.8038
		(0.1533)		(0.1502)		(0.1102)		(0.1090)
		[0.1604]		[0.1604]		[0.1108]		[0.1108]
$\widehat{\delta}$		0.2002		0.1991		0.1995		0.1999
		(0.1535)		(0.1412)		(0.1060)		(0.0998)
		[0.1599]		[0.1415]		[0.1076]		[0.1016]

Note: Observations $n=49$ or $98, \beta_{1}=\beta_{2}=\gamma_{1}=1$, and $\gamma_{2}=0.8$. Estimated standard error based on an asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.

Table 2: Estimates from spatial weight matrices with weak endogeneity (large sample)

$\rho=0.2$	WA($n=361$)				WC($n=361$)			
$\lambda=0.2$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\widehat{\lambda}$	0.1187	0.1986	0.1512	0.1963	0.1536	0.1987	0.1743	0.1954
	(0.0908)	(0.0850)	(0.0555)	(0.0531)	(0.0744)	(0.0691)	(0.0418)	(0.0403)
	[0.0868]	[0.0859]	[0.0541]	[0.0544]	[0.0731]	[0.0697]	[0.0417]	[0.0403]
$\widehat{\beta}_{1}$	1.1082	1.0036	1.0654	1.0066	1.0630	1.0037	1.0356	1.0079
	(0.1300)	(0.1232)	(0.0896)	(0.0871)	(0.1116)	(0.1053)	(0.0762)	(0.0747)
	[0.1275]	[0.1238]	[0.0882]	[0.0868]	[0.1114]	[0.1060]	[0.0753]	[0.0731]
$\widehat{\beta}_{2}$	0.9919	0.9994	0.9961	1.0003	0.9945	0.9990	0.9981	1.0001
	(0.0562)	(0.0561)	(0.0554)	(0.0554)	(0.0562)	(0.0560)	(0.0554)	(0.0553)
	[0.0565]	[0.0563]	[0.0552]	[0.0553]	[0.0564]	[0.0561]	[0.0553]	[0.0553]
$\widehat{\gamma}_{1}$		0.9966		0.9966		0.9966		0.9966
		(0.0528)		(0.0526)		(0.0528)		(0.0526)
		[0.0543]		[0.0543]		[0.0543]		[0.0543]
$\widehat{\gamma}_{2}$		0.8005		0.8005		0.8005		0.8005
		(0.0555)		(0.0553)		(0.0555)		(0.0553)
		[0.0555]		[0.0555]		[0.0555]		[0.0555]
$\widehat{\delta}$		0.2010		0.2005		0.2008		0.2004
		(0.0536)		(0.0521)		(0.0524)		(0.0516)
		[0.0553]		[0.0543]		[0.0541]		[0.0535]
$\lambda=0.4$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\hat{\lambda}$	0.3233	0.3980	0.3501	0.3952	0.3591	0.3982	0.3764	0.3955
	(0.0855)	(0.0783)	(0.0504)	(0.0476)	(0.0649)	(0.0590)	(0.0353)	(0.0337)
	[0.0819]	[0.0792]	[0.0499]	[0.0487]	[0.0637]	[0.0596]	[0.0361]	[0.0337]
$\widehat{\beta}_{1}$	1.1355	1.0053	1.0886	1.0100	1.0734	1.0051	1.0430	1.0096
	(0.1582)	(0.1462)	(0.1024)	(0.0981)	(0.1256)	(0.1161)	(0.0812)	(0.0790)
	[0.1549]	[0.1477]	[0.1022]	[0.0983]	[0.1251]	[0.1172]	[0.0813]	[0.0774]
$\widehat{\beta}_{2}$	0.9974	0.9994	0.9994	1.0006	1.0000	0.9991	1.0012	1.0007
	(0.0560)	(0.0556)	(0.0554)	(0.0552)	(0.0561)	(0.0556)	(0.0554)	(0.0552)
	[0.0556]	[0.0556]	[0.0551]	[0.0552]	[0.0554]	[0.0554]	[0.0551]	[0.0551]
$\widehat{\gamma}_{1}$		0.9966		0.9966		0.9966		0.9966
		(0.0528)		(0.0526)		(0.0528)		(0.0526)
		[0.0543]		[0.0543]		[0.0543]		[0.0543]
$\widehat{\gamma}_{2}$		0.8005		0.8005		0.8005		0.8005
		(0.0555)		(0.0553)		(0.0555)		(0.0553)
		[0.0555]		[0.0555]		[0.0555]		[0.0555]
$\widehat{\delta}$		0.2010		0.2005		0.2008		0.2006
		(0.0529)		(0.0519)		(0.0521)		(0.0516)
		[0.0547]		[0.0540]		[0.0538]		[0.0534]

Note: Observations $n=361, \beta_{1}=\beta_{2}=\gamma_{1}=1$, and $\gamma_{2}=0.8$. Estimated standard error based on an asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.

Table 3: Estimates from spatial weight matrices with medium endogeneity (small sample)

$\rho=0.5$	WS($n=49$)				$\mathrm{WO}(n=98)$			
$\lambda=0.2$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\hat{\lambda}$	0.0318	0.1967	0.0839	0.1835	-0.0455	0.1805	0.0531	0.1819
	(0.2554)	(0.2004)	(0.1384)	(0.1164)	(0.2163)	(0.1602)	(0.1169)	(0.0954)
	[0.2378]	[0.2171]	[0.1292]	[0.1227]	[0.1924]	[0.1672]	[0.1048]	[0.0974]
$\widehat{\beta}_{1}$	1.2234	0.9985	1.1560	1.0197	1.3352	1.0298	1.2005	1.0268
	(0.3781)	(0.3124)	(0.2344)	(0.2123)	(0.3097)	(0.2401)	(0.1863)	(0.1633)
	[0.3550]	[0.3207]	[0.2339]	[0.2145]	[0.2964]	[0.2508]	[0.1875]	[0.1689]
$\widehat{\beta}_{2}$	0.9626	0.9860	0.9794	0.9920	0.9342	0.9866	0.9615	0.9905
	(0.1601)	(0.1603)	(0.1501)	(0.1510)	(0.1185)	(0.1177)	(0.1100)	(0.1109)
	[0.1684]	[0.1653]	[0.1580]	[0.1588]	[0.1268]	[0.1214]	[0.1158]	[0.1173]
$\widehat{\gamma}_{1}$		1.0033		1.0033		1.0023		1.0023
		(0.1422)		(0.1392)		(0.1014)		(0.1004)
		[0.1475]		[0.1475]		[0.1051]		[0.1051]
$\widehat{\gamma}_{2}$		0.7984		0.7984		0.8022		0.8022
		(0.1536)		(0.1505)		(0.1103)		(0.1092)
		[0.1596]		[0.1596]		[0.1130]		[0.1130]
$\widehat{\delta}$		0.5050		0.5014		0.4995		0.4989
		(0.1376)		(0.1257)		(0.0960)		(0.0893)
		[0.1476]		[0.1384]		[0.1008]		[0.0954]
$\hat{\lambda}$	0.2318	0.3921	0.2843	0.3773	0.1593	0.3788	0.2606	0.3792
	(0.2510)	(0.1909)	(0.1287)	(0.1062)	(0.2144)	(0.1515)	(0.1082)	(0.0864)
	[0.2417]	[0.2116]	[0.1250]	[0.1127]	[0.1951]	[0.1600]	[0.1025]	[0.0894]
$\widehat{\beta}_{1}$	1.2981	1.0072	1.2078	1.0384	1.4337	1.0418	1.2510	1.0396
	(0.4796)	(0.3792)	(0.2727)	(0.2394)	(0.3972)	(0.2901)	(0.2175)	(0.1841)
	[0.4638]	[0.4033]	[0.2791]	[0.2462]	[0.3824]	[0.3075]	[0.2242]	[0.1926]
$\widehat{\beta}_{2}$	0.9733	0.9858	0.9874	0.9930	0.9471	0.9870	0.9705	0.9910
	(0.1609)	(0.1589)	(0.1509)	(0.1505)	(0.1177)	(0.1153)	(0.1099)	(0.1099)
	[0.1670]	[0.1637]	[0.1579]	[0.1580]	[0.1246]	[0.1190]	[0.1152]	[0.1159]
$\widehat{\gamma}_{1}$		1.0033		1.0033		1.0023		1.0023
		(0.1353)		(0.1392)		(0.1048)		(0.1004)
		[0.1475]		[0.1475]		[0.1051]		[0.1051]
$\widehat{\gamma}_{2}$		0.7984		0.7984		0.8022		0.8022
		(0.1422)		(0.1505)		(0.1103)		(0.1092)
		[0.1596]		[0.1596]		[0.1130]		[0.1130]
$\widehat{\delta}$		0.5043		0.5013		0.5000		0.4992
		(0.1536)		(0.1248)		(0.0938)		(0.0884)
		[0.1441]		[0.1371]		[0.0983]		[0.0943]

Note: Observations $n=49$ or $98, \beta_{1}=\beta_{2}=\gamma_{1}=1$, and $\gamma_{2}=0.8$. Estimated standard error based on an asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.

Table 4: Estimates from spatial weight matrices with medium endogeneity (large sample)

$\rho=0.5$	WA($n=361$)				WC($n=361$)			
$\lambda=0.2$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\widehat{\lambda}$	0.0168	0.2004	0.0853	0.1976	0.0935	0.2002	0.1441	0.1970
	(0.0933)	(0.0698)	(0.0567)	(0.0465)	(0.0772)	(0.0580)	(0.0426)	(0.0359)
	[0.0806]	[0.0694]	[0.0536]	[0.0468]	[0.0710]	[0.0562]	[0.0431]	[0.0352]
$\widehat{\beta}_{1}$	1.2419	1.0012	1.1520	1.0048	1.1426	1.0016	1.0756	1.0057
	(0.1330)	(0.1059)	(0.0907)	(0.0805)	(0.1150)	(0.0932)	(0.0770)	(0.0708)
	[0.1235]	[0.1034]	[0.0901]	[0.0781]	[0.1109]	[0.0902]	[0.0780]	[0.0683]
$\widehat{\beta}_{2}$	0.9748	1.0001	0.9851	1.0005	0.9855	0.9998	0.9934	1.0003
	(0.0566)	(0.0563)	(0.0553)	(0.0555)	(0.0568)	(0.0560)	(0.0554)	(0.0554)
	[0.0575]	[0.0563]	[0.0551]	[0.0554]	[0.0570]	[0.0560]	[0.0552]	[0.0553]
$\widehat{\gamma}_{1}$		0.9976		0.9976		0.9976		0.9976
		(0.0528)		(0.0527)		(0.0528)		(0.0527)
		[0.0542]		[0.0542]		[0.0542]		[0.0542]
$\widehat{\gamma}_{2}$		0.8009		0.8009		0.8009		0.8009
		(0.0555)		(0.0553)		(0.0555)		(0.0553)
		[0.0560]		[0.0560]		[0.0560]		[0.0560]
$\widehat{\delta}$		0.5000		0.4992		0.4998		0.4991
		(0.0479)		(0.0464)		(0.0464)		(0.0457)
		[0.0498]		[0.0484]		[0.0478]		[0.0472]
$\lambda=0.4$								
$\widehat{\lambda}$	0.2264	0.3998	0.2993	0.3966	0.3065	0.3997	0.3574	0.3969
	(0.0899)	(0.0646)	(0.0521)	(0.0420)	(0.0687)	(0.0496)	(0.0360)	(0.0302)
	[0.0781]	[0.0642]	[0.0505]	[0.0423]	[0.0631]	[0.0481]	[0.0366]	[0.0296]
$\widehat{\beta}_{1}$	1.3050	1.0019	1.1774	1.0075	1.1658	1.0024	1.0764	1.0071
	(0.1657)	(0.1248)	(0.1050)	(0.0902)	(0.1320)	(0.1018)	(0.0823)	(0.0746)
	[0.1523]	[0.1223]	[0.1052]	[0.0882]	[0.1261]	[0.0987]	[0.0831]	[0.0719]
$\widehat{\beta}_{2}$	0.9882	1.0001	0.9941	1.0006	0.9989	0.9998	1.0005	1.0008
	(0.0565)	(0.0557)	(0.0554)	(0.0553)	(0.0567)	(0.0555)	(0.0556)	(0.0552)
	[0.0563]	[0.0556]	[0.0550]	[0.0552]	[0.0556]	[0.0553]	[0.0551]	[0.0551]
$\widehat{\gamma}_{1}$		0.9976		0.9976		0.9976		0.9976
		(0.0528)		(0.0527)		(0.0528)		(0.0527)
		[0.0542]		[0.0542]		[0.0542]		[0.0542]
$\widehat{\gamma}_{2}$		0.8009		0.8009		0.8009		0.8009
		(0.0555)		(0.0553)		(0.0555)		(0.0553)
		[0.0560]		[0.0560]		[0.0560]		[0.0560]
$\widehat{\delta}$		0.4999		0.4992		0.4997		0.4994
		(0.0469)		(0.0459)		(0.0459)		(0.0455)
		[0.0487]		[0.0478]		[0.0474]		[0.0470]

Note: Observations $n=361, \beta_{1}=\beta_{2}=\gamma_{1}=1$, and $\gamma_{2}=0.8$. Estimated standard error based on an asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.

Table 5: Estimates from spatial weight matrices with strong endogeneity (small sample)

$\rho=0.8$	WS($n=49$)				$\mathrm{WO}(n=98)$			
$\lambda=0.2$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\widehat{\lambda}$	-0.0469	0.2002	0.0152	0.1921	-0.1427	0.1913	-0.0345	0.1917
	(0.2525)	(0.1309)	(0.1400)	(0.0830)	(0.2193)	(0.1021)	(0.1191)	(0.0667)
	[0.2206]	[0.1377]	[0.1289]	[0.0881]	[01797]	[0.1066]	[0.1066]	[0.0690]
$\widehat{\beta}_{1}$	1.3325	0.9968	1.2506	1.0092	1.4673	1.0140	1.3194	1.0133
	(0.3728)	(0.2332)	(0.2352)	(0.1814)	(0.3133)	(0.1729)	(0.1880)	(0.1353)
	[0.3428]	[0.2340]	[0.2416]	[0.1807]	[0.2915]	[0.1779]	[0.1991]	[0.1394]
$\widehat{\beta}_{2}$	0.9436	0.9934	0.9642	0.9955	0.8974	0.9913	0.9319	0.9931
	(0.1594)	(0.1581)	(0.1484)	(0.1515)	(0.1176)	(0.1145)	(0.1083)	(0.1104)
	[0.1668]	[0.1607]	[0.1564]	[0.1583]	[0.1302]	[0.1179]	[0.1169]	[0.1166]
$\widehat{\gamma}_{1}$		1.0015		1.0028		1.0024		1.0024
		(0.1427)		(0.1398)		(0.1015)		(0.1005)
		[0.1418]		[0.1450]		[0.1028]		[0.1029]
$\widehat{\gamma}_{2}$		0.7982		0.7983		0.7999		0.7999
		(0.1542)		(0.1511)		(0.1104)		(0.1093)
		[0.1582]		[0.1588]		[0.1149]		[0.1149]
$\widehat{\delta}$		0.8047		0.8011		0.7985		0.7978
		(0.0960)		(0.0876)		(0.0676)		(0.0628)
		[0.1025]		[0.0954]		[0.0705]		[0.0664]
$\lambda=0.4$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\widehat{\lambda}$	0.1543	0.3983	0.2281	0.3885	0.0636	0.3905	0.1898	0.3900
	(0.2530)	(0.1247)	(0.1320)	(0.0765)	(0.2219)	(0.0965)	(0.1121)	(0.0611)
	[0.2274]	[0.1323]	[0.1278]	[0.0820]	[0.1862]	[0.1017]	[0.1066]	[0.0640]
$\widehat{\beta}_{1}$	1.4404	0.9998	1.3104	1.0181	1.6052	1.0194	1.3778	1.0200
	(0.4826)	(0.2726)	(0.2777)	(0.1990)	(0.4105)	(0.2017)	(0.2233)	(0.1487)
	[0.4471]	[0.2793]	[0.2902]	[0.2013]	[0.3791]	[0.2104]	[0.2393]	[0.1547]
$\widehat{\beta}_{2}$	0.9603	0.9931	0.9784	0.9959	0.9173	0.9915	0.9501	0.9932
	(0.1606)	(0.1570)	(0.1499)	(0.1509)	(0.1178)	(0.1130)	(0.1089)	(0.1097)
	[0.1654]	[0.1596]	[0.1562]	[0.1579]	[0.1285]	[0.1167]	[0.1162]	[0.1157]
$\widehat{\gamma}_{1}$		1.0015		1.0011		1.0024		1.0024
		(0.0933)		(0.1398)		(0.1015)		(0.1005)
		[0.1418]		[0.1427]		[0.1028]		[0.1029]
$\widehat{\gamma}_{2}$		0.7982		0.7987		0.7999		0.7998
		(0.1427)		(0.1510)		(0.1104)		(0.1093)
		[0.1582]		[0.1587]		[0.1149]		[0.1150]
$\widehat{\delta}$		0.8044		0.8008		0.7988		0.7980
		(0.1542)		(0.0863)		(0.0652)		(0.0616)
		[0.0989]		[0.0934]		[0.0680]		[0.0651]

Note: Observations $n=49$ or $98, \beta_{1}=\beta_{2}=\gamma_{1}=1$, and $\gamma_{2}=0.8$. Estimated standard error based on an asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.

Table 6: Estimates from spatial weight matrices with strong endogeneity (large sample)

$\rho=0.8$	WA($n=361$)				WC($n=361$)			
$\lambda=0.2$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\widehat{\lambda}$	-0.0712	0.2009	0.0047	0.1988	0.0386	0.2005	0.1039	0.1985
	(0.0944)	(0.0453)	(0.0576)	(0.0325)	(0.0792)	(0.0383)	(0.0435)	(0.0257)
	[0.0765]	[0.0435]	[0.0528]	[0.0316]	[0.0697]	[0.0362]	[0.0443]	[0.0254]
$\widehat{\beta}_{1}$	1.3579	1.0005	1.2580	1.0033	1.2153	1.0011	1.1288	1.0037
	(0.1340)	(0.0797)	(0.0914)	(0.0677)	(0.1174)	(0.0733)	(0.0778)	(0.0626)
	[0.1231]	[0.0752]	[0.0931]	[0.0641]	[0.1111]	[0.0692]	[0.0810]	[0.0603]
$\widehat{\beta}_{2}$	0.9509	1.0011	0.9657	1.0010	0.9732	1.0009	0.9851	1.0009
	(0.0562)	(0.0561)	(0.0546)	(0.0555)	(0.0571)	(0.0558)	(0.0553)	(0.0554)
	[0.0589]	[0.0557]	[0.0555]	[0.0553]	[0.0579]	[0.0556]	[0.0554]	[0.0553]
$\widehat{\gamma}_{1}$		0.9991		0.9991		0.9991		0.9991
		(0.0528)		(0.0526)		(0.0528)		(0.0526)
		[0.0532]		[0.0532]		[0.0532]		[0.0532]
$\widehat{\gamma}_{2}$		0.8014		0.8014		0.8014		0.8014
		(0.0555)		(0.0553)		(0.0555)		(0.0553)
		[0.0562]		[0.0562]		[0.0562]		[0.0562]
$\widehat{\delta}$		0.7993		0.7986		0.7992		0.7986
		(0.0336)		(0.0325)		(0.0322)		(0.0317)
		[0.0339]		[0.0327]		[0.0322]		[0.0319]
$\lambda=0.4$	IV	2SIV	SAR	MLE	IV	2SIV	SAR	MLE
$\hat{\lambda}$	0.1408	0.4006	0.2344	0.3983	0.2576	0.4002	0.3323	0.3985
	(0.0929)	(0.0421)	(0.0539)	(0.0296)	(0.0720)	(0.0328)	(0.0370)	(0.0217)
	[0.0762]	[0.0404]	[0.0517]	[0.0290]	[0.0631]	[0.0310]	[0.0376]	[0.0217]
$\widehat{\beta}_{1}$	1.4552	1.0006	1.2912	1.0046	1.2516	1.0014	1.1205	1.0035
	(0.1706)	(0.0907)	(0.1075)	(0.0738)	(0.1375)	(0.0782)	(0.0837)	(0.0649)
	[0.1539]	[0.0856]	[0.1104]	[0.0700]	[0.1278]	[0.0738]	[0.0858]	[0.0650]
$\widehat{\beta}_{2}$	0.9720	1.0010	0.9832	1.0010	0.9948	1.0008	0.9986	1.0007
	(0.0565)	(0.0556)	(0.0551)	(0.0553)	(0.0572)	(0.0555)	(0.0556)	(0.0552)
	[0.0576]	[0.0553]	[0.0553]	[0.0551]	[0.0561]	[0.0552]	[0.0551]	[0.0573]
$\widehat{\gamma}_{1}$		0.9991		0.9991		0.9991		0.9977
		(0.0528)		(0.0526)		(0.0528)		(0.0527)
		[0.0532]		[0.0532]		[0.0532]		[0.0610]
$\widehat{\gamma}_{2}$		0.8014		0.8014		0.8014		0.8011
		(0.0555)		(0.0553)		(0.0555)		(0.0553)
		[0.0562]		[0.0562]		[0.0562]		[0.0591]
$\widehat{\delta}$		0.7992		0.7986		0.7991		0.7985
		(0.0326)		(0.0320)		(0.0318)		(0.0315)
		[0.0329]		[0.0321]		[0.0318]		[0.0329]

Note: Observations $n=361, \beta_{1}=\beta_{2}=\gamma_{1}=1$, and $\gamma_{2}=0.8$. Estimated standard error based on an asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.

The simulation results are summarized as follows.

1. For the biases of parameter estimators, our 2SIV and MLE estimators have very small biases in all cases. For conventional IV and SAR estimators, the higher the degree of endogeneity is, i.e., the larger the correlation coefficient ρ is, the larger the bias of estimator is. The biases for estimators of the spatial correlation $\hat{\lambda}$ are, in general, much higher than those for β. $\widehat{\lambda}$ from IV and SAR suffers severe downward bias when $\rho=0.5$ or 0.8 , in some cases with bias exceeding 100%. The conventional IV performs much worse than the conventional SAR.
2. For the variances of parameter estimators, we provide both the empirical standard deviation based on 1000 replications and the mean of estimated standard error based on the asymptotic variancecovariance matrix. From Tables 1-6, we can see that these two values are very close in all cases. Comparing variances of estimators from different estimation methods, we can see that IV is close to 2SIV and SAR is close to MLE. It seems that estimators based on the likelihood estimation method have smaller variances than those based on the IV methods.
3. The biases of IV and SAR estimators vary with the spatial correlation λ. When true $\lambda=0.2, \hat{\lambda}$ from the IV and SAR have large biases relative to its true value than when $\lambda=0.4$. It seems that the conventional methods produce even more severe bias in the situation of weak spatial correlation.
4. Comparing Table 1 to Table 2, Table 3 to Table 4, and Table 5 to Table 6, as sample size increases while the number of neighbors for each agent grows at a slower rate, the bias and standard error of estimators decrease.

7 Conclusion

In this paper, we consider the specification and estimation of a cross-sectional SAR model with an endogenous spatial weight matrix. First, we specify two sets of equations: one is for the SAR outcome, and the other is for entries of the spatial weight matrix. The source of endogeneity is the correlation between the disturbances in the SAR outcome equation and the errors in the spatial weight entry equation. Second, under the conditional moment assumptions on disturbances, we propose three estimation methods: 2SIV, QMLE, and GMM. We consider two types of spatial weight matrices: one is sparse and another one has its entries decreasing sufficiently fast as the physical distance increases. By employing the theory of asymptotic inference under near-epoch dependence, we prove the consistency and asymptotic normality of these three estimators. In generalized 2SIV, we also provide the optimal choice for IV matrices.

To examine the behavior of our proposed estimators in finite samples, we conduct a Monte Carlo simulation study. The simulation results indicate that the commonly used estimates under exogenous weight matrix suffer serious downward bias when the true weight matrix is endogenous. On the other hand, our
estimates have good finite sample properties. As sample size increases and the number of neighbors grows more slowly, our estimates quickly converge to true parameters.

This paper focuses on estimating a cross-sectional SAR model with a specified source of endogeneity for the spatial weight matrix. In future research, we may extend our cross-sectional model to a spatial panel data setting where the spatial weight matrix varies over time due to changing economic conditions. Another issue that needs future research is to consider an endogenous spatial weight matrix purely constructed with economic distances. This could be a technical challenging issue as the near-epoch assumption may not be met. Thus alternative large sample theorems may need to be developed.

References

[1] Anselin, L. (1980), Estimation methods for spatial autoregressive structures, Regional Science Dissertation and Monograph Series. Cornell University, Ithaca, NY.
[2] Anselin, L. and A. Bera, (1997), Spatial dependence in linear regression models with an introduction to spatial econometrics, Journal of Public Economics 52, 285-307.
[3] Case, A., H. Rosen, and J. Hines, (1993), Budget spillovers and fiscal policy interdependence: Evidence from the states, in Handbook of Applied Economic Statistics. D. Giles and A. Ullah, Eds., Marcel Dekker, NY.
[4] Conway, K. and and J. Rork, (2004), Diagnosis murder: The death of state death taxes, Economic Inquiry 42, 537-559.
[5] Crabbé, K. and H. Vandenbussche (2008), Spatial tax competition in the EU15, Working Paper, Catholic University Leuven.
[6] Hsieh, C. and L. Lee (2011), A social interactions model with endogenous friendship, Working Paper, The Ohio State University.
[7] Kelejian, H. and I. Prucha (1998), A generalized spatial two stage least squares procedures for estimating a spatial autoregressive model with autoregressive disturbances, Journal of Real Estate Finance and Economics 17, 99-121.
[8] Kelejian, H. and I. Prucha (1999), A generalized moments estimator for the autoregressive parameter in a spatial model, International Economic Review 40, 509-533.
[9] Jenish, N., and I. Prucha (2009), Central limit theorems and uniform laws of large numbers for arrays of random fields, Journal of Econometrics 150, 86-98.
[10] Jenish, N., and I. Prucha (2012), On spatial processes and asymptotic inference under near-epoch dependence, Journal of Econometrics 170, 178-190.
[11] Lee, L. (2004), Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models, Econometrica 72, 1899-1925.
[12] Lee, L. (2007), GMM and 2SLS estimation of mixed regressive, spatial autoregressive models, Journal of Econometrics 137, 489-514.
[13] Lee, L. and X. Liu (2010), Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances, Econometric Theory 26, 187-230.
[14] Lin, X. and L. Lee (2010), GMM estimation of spatial autoregressive models with unknown heteroskedasticity, Journal of Econometrics 157, 34-52.
[15] Liu, X., L. Lee, and C. Bollinger. (2010), Improved efficient quasi-maximum likelihood estimator of spatial autoregressive models, Journal of Econometrics 159, 303-319.
[16] Ord J. (1975), Estimation methods for models of spatial interaction, Journal of the American Statistical Association 70, 120-126.
[17] Pinkse, J. and M. Slade (2010), The future of spatial econometrics, Journal of Regional Science 50, 103-117.
[18] Qu, X., and L. Lee (2012), LM tests for spatial correlation in spatial models with limited dependent variables. Regional Science and Urban Economics 42, 430-445.
[19] White, H. (1982), Maximum likelihood estimation in misspecified models, Econometrica 50, 1-26.

Appendices

A Expressions related to the statistics

A. 1 First order derivatives and the expectation of the log quasi-likelihood function

The expectation of the \log quasi-likelihood function in (3.4) is

$$
\begin{aligned}
\frac{1}{n} E\left(\ln L_{n}(\theta)\right) & =-\ln (2 \pi)-\frac{1}{2} \ln \left(\sigma_{\xi}^{2}\right)-\frac{1}{2} \ln \left|\Sigma_{\varepsilon}\right|+\frac{1}{n} E\left(\ln \left|S_{n}(\lambda)\right|\right)-\frac{1}{2} \operatorname{tr}\left(\Sigma_{\varepsilon}^{-1} \Sigma_{\varepsilon 0}\right) \\
& -\frac{1}{2 n} \sum_{i=1}^{n} x_{2, i n}^{\prime}\left(\Gamma_{0}-\Gamma\right) \Sigma_{\varepsilon}^{-1}\left(\Gamma_{0}-\Gamma\right)^{\prime} x_{2, i n}-\frac{1}{2 n} \frac{\sigma_{\xi 0}^{2}}{\sigma_{\xi}^{2}} E\left[\operatorname{tr}\left(S_{n}^{-1 \prime} S_{n}(\lambda)^{\prime} S_{n}(\lambda) S_{n}^{-1}\right)\right] \\
& -\frac{1}{2 \sigma_{\xi}^{2}}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right) H_{1 n}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right)^{\prime},
\end{aligned}
$$

where $H_{1 n}=\frac{1}{n} E\left[\left(G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, X_{2 n}, \varepsilon_{n}\right)^{\prime}\left(G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, X_{2 n}, \varepsilon_{n}\right)\right]$.
The first order derivatives are

$$
\begin{aligned}
& \frac{\partial \ln L_{n}(\theta)}{\partial \lambda}=\frac{1}{\sigma_{\xi}^{2}}\left(W_{n} Y_{n}\right)^{\prime} \xi_{n}(\theta)-\operatorname{tr}\left[W_{n} S_{n}^{-1}(\lambda)\right] ; \frac{\partial \ln L_{n}(\theta)}{\partial \beta}=\frac{1}{\sigma_{\xi}^{2}} X_{1 n}^{\prime} \xi_{n}(\theta) \\
& \frac{\partial \ln L_{n}(\theta)}{v e c(\Gamma)}=\left(\Sigma_{\varepsilon}^{-1} \otimes X_{2 n}^{\prime}\right) \operatorname{vec}\left(Z_{n}-X_{2 n} \Gamma\right)-\frac{1}{\sigma_{\xi}^{2}} \delta \otimes\left(X_{2 n}^{\prime} \xi_{n}(\theta)\right) \\
& \frac{\partial \ln L_{n}(\theta)}{\partial \sigma_{\xi}^{2}}=-\frac{n}{2 \sigma_{\xi}^{2}}+\frac{1}{2 \sigma_{\xi}^{4}} \xi_{n}(\theta)^{\prime} \xi_{n}(\theta) ; \frac{\partial \ln L_{n}(\theta)}{\partial \delta}=\frac{1}{\sigma_{\xi}^{2}} \varepsilon_{n}(\theta)^{\prime} \xi_{n}(\theta) \\
& \frac{\partial \ln L_{n}(\theta)}{\partial \alpha}=-\frac{n}{2} \frac{\partial \ln \left|\Sigma_{\varepsilon}\right|}{\partial \alpha}-\frac{1}{2} \frac{\partial}{\partial \alpha} \operatorname{tr}\left[\Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right]
\end{aligned}
$$

where $\xi_{n}(\theta)=S_{n}(\lambda) Y_{n}-X_{1 n} \beta-\left(Z_{n}-X_{2 n} \Gamma\right) \delta$ and $\varepsilon_{n}(\Gamma)=Z_{n}-X_{2 n} \Gamma$. As α is a J-dimensional column vector of distinct elements in Σ_{ε}, the J-dimensional vector $\frac{\partial \ln \left|\Sigma_{\varepsilon}\right|}{\partial \alpha}$ has the j th element $\operatorname{tr}\left(\Sigma_{\varepsilon}^{-1} \frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{j}}\right)$ and $\frac{\partial}{\partial \alpha} \operatorname{tr}\left[\Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right]$ has its j th element $-\operatorname{tr}\left(\Sigma_{\varepsilon}^{-1} \frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{j}} \Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right)$ for $j=1, \ldots, J$.

A. 2 Second order derivatives and the variance-covariance matrix

The second order derivatives are

$$
\begin{aligned}
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \lambda \partial \lambda}=-\operatorname{tr}\left[W_{n} S_{n}^{-1}(\lambda)\right]^{2}-\frac{1}{\sigma_{\xi}^{2}}\left(W_{n} Y_{n}\right)^{\prime} W_{n} Y_{n} ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \lambda \partial \sigma_{\xi}^{2}}=-\frac{1}{\sigma_{\xi}^{4}}\left(W_{n} Y_{n}\right)^{\prime} \xi_{n}(\theta) \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \lambda \partial \beta}=-\frac{1}{\sigma_{\xi}^{2}} X_{1 n}^{\prime} W_{n} Y_{n} ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \lambda v e c(\Gamma)}=\frac{1}{\sigma_{\xi}^{2}} \delta \otimes\left(X_{2 n}^{\prime} W_{n} Y_{n}\right) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \lambda \partial \alpha}=0 ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \lambda \partial \delta}=-\frac{1}{\sigma_{\xi}^{2}} \varepsilon_{n}(\Gamma)^{\prime}\left(W_{n} Y_{n}\right) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \beta \partial \beta^{\prime}}=-\frac{1}{\sigma_{\xi}^{2}} X_{1 n}^{\prime} X_{1 n} ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \beta \partial v e c(\Gamma)^{\prime}}=\frac{1}{\sigma_{\xi}^{2}} \delta \otimes\left(X_{2 n}^{\prime} X_{1 n}\right) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \beta \partial \alpha^{\prime}}=0 ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \beta \partial \delta^{\prime}}=-\frac{1}{\sigma_{\xi}^{2}} X_{1 n}^{\prime} \varepsilon_{n}(\Gamma) ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \beta \partial \sigma_{\xi}^{2}}=-\frac{1}{\sigma_{\xi}^{4}} X_{1 n}^{\prime} \xi_{n}(\theta) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial v e c(\Gamma) \partial v e c(\Gamma)^{\prime}}=-\Sigma_{\varepsilon}^{-1} \otimes\left(X_{2 n}^{\prime} X_{2 n}\right)-\frac{1}{\sigma_{\xi}^{2}} \delta \delta^{\prime} \otimes\left(X_{2 n}^{\prime} X_{2 n}\right) ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial v e c(\Gamma) \partial \sigma_{\xi}^{2}}=\frac{1}{\sigma_{\xi}^{4}} \delta \otimes\left(X_{2 n}^{\prime} \xi_{n}(\theta)\right) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial v e c(\Gamma) \partial \alpha^{\prime}}=\left[I_{p_{2}} \otimes\left(X_{2 n}^{\prime} \varepsilon_{n}(\Gamma)\right)\right] \frac{\partial v e c\left(\Sigma_{\varepsilon}^{-1}\right)}{\partial \alpha^{\prime}} ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \delta \partial v e c(\Gamma)^{\prime}}=-\frac{1}{\sigma_{\xi}^{2}} I_{p 2} \otimes\left(X_{2 n}^{\prime} \xi_{n}(\theta)\right)+\frac{1}{\sigma_{\xi}^{2}} \delta \otimes\left(X_{2 n}^{\prime} \varepsilon_{n}(\Gamma)\right) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \sigma_{\xi}^{2} \partial \alpha}=0 ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \sigma_{\xi}^{2} \partial \sigma_{\xi}^{2}}=\frac{n}{2 \sigma_{\xi}^{4}}-\frac{1}{\sigma_{\xi}^{6}} \xi_{n}(\theta)^{\prime} \xi_{n}(\theta) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \sigma_{\xi}^{2} \partial \delta}=-\frac{1}{\sigma_{\xi}^{4}} \varepsilon_{n}(\theta)^{\prime} \xi_{n}(\theta) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \alpha \partial \delta^{\prime}}=0 ; \\
& \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \delta \partial \delta^{\prime}}=-\frac{1}{\sigma_{\xi}^{2}} \varepsilon_{n}(\theta)^{\prime} \varepsilon_{n}(\theta) ; \frac{\partial^{2} \ln L_{n}(\theta)}{\partial \alpha \partial \alpha^{\prime}}=-\frac{n}{2} \frac{\partial^{2} \ln \left|\Sigma_{\varepsilon}\right|}{\partial \alpha \partial \alpha^{\prime}}-\frac{1}{2} \frac{\partial^{2}}{\partial \alpha \partial \alpha^{\prime}} \operatorname{tr}\left[\Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right] .
\end{aligned}
$$

where $\frac{\partial^{2} \ln \left|\Sigma_{\varepsilon}\right|}{\partial \alpha \partial \alpha^{\prime}}$ is a $J \times J$ matrix with the (j, k) th element $\frac{\partial^{2} \ln \left|\Sigma_{\varepsilon}\right|}{\partial \alpha_{j} \partial \alpha_{k}}=-\operatorname{tr}\left(\Sigma_{\varepsilon}^{-1} \frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{k}} \Sigma_{\varepsilon}^{-1} \frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{j}}\right)$ and the (j, k) th element of $\frac{\partial^{2}}{\partial \alpha \partial \alpha^{\prime}} \operatorname{tr}\left[\Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right]$ is

$$
\frac{\partial^{2}}{\partial \alpha_{j} \partial \alpha_{k}} \operatorname{tr}\left[\Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right]=\operatorname{tr}\left(\Sigma_{\varepsilon}^{-1}\left(\frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{k}} \Sigma_{\varepsilon}^{-1} \frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{j}}+\frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{j}} \Sigma_{\varepsilon}^{-1} \frac{\partial \Sigma_{\varepsilon}}{\partial \alpha_{k}}\right) \Sigma_{\varepsilon}^{-1} \varepsilon_{n}(\Gamma)^{\prime} \varepsilon_{n}(\Gamma)\right)
$$

for $j, k=1, \ldots, J$. Therefore,

$$
E\left(\frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)=\frac{1}{\sigma_{\xi 0}^{2}}\left(\begin{array}{cccccc}
I_{\lambda \lambda} & I_{\lambda \beta}^{\prime} & I_{\lambda \Gamma}^{\prime} & -E\left[\operatorname{tr}\left(G_{n}\right)\right] & 0 & I_{\lambda \delta}^{\prime} \\
* & -X_{1 n}^{\prime} X_{1 n} & \delta_{0}^{\prime} \otimes\left(X_{1 n}^{\prime} X_{2 n}\right) & 0 & 0 & 0 \\
* & * & I_{\Gamma \Gamma} & 0 & 0 & 0 \\
* & 0 & 0 & -\frac{n}{2 \sigma_{\xi 0}^{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & I_{\alpha \alpha} & 0 \\
* & 0 & 0 & 0 & 0 & -n \Sigma_{\varepsilon 0}
\end{array}\right)
$$

with

$$
\begin{aligned}
I_{\lambda \lambda} & =-\sigma_{\xi 0}^{2} \operatorname{tr}\left[E\left(G_{n}^{2}+G_{n} G_{n}^{\prime}\right)\right]-E\left[\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)^{\prime} G_{n}^{\prime}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)\right] \\
I_{\lambda \beta} & =-X_{1 n}^{\prime} E\left(G_{n} X_{1 n} \beta_{0}+G_{n} \varepsilon_{n} \delta_{0}\right) ; I_{\lambda \Gamma}=\delta_{0} \otimes\left[X_{2 n}^{\prime} E\left(G_{n} X_{1 n} \beta_{0}+G_{n} \varepsilon_{n} \delta_{0}\right)\right] \\
I_{\lambda \delta} & =-E\left[\varepsilon_{n}^{\prime} G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)\right] ; I_{\Gamma \Gamma}=-\left(\sigma_{\xi 0}^{2} \Sigma_{\varepsilon 0}^{-1}+\delta_{0} \delta_{0}^{\prime}\right) \otimes\left(X_{2 n}^{\prime} X_{2 n}\right) \\
\left(I_{\alpha \alpha}\right)_{k j} & =-\frac{n \sigma_{\xi 0}^{2}}{2} \operatorname{tr}\left(\Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{k}} \Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{j}}\right) \text { for } j, k=1, \ldots, J .
\end{aligned}
$$

And

$$
E\left(\frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta} \frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta^{\prime}}\right)=-E\left(\frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)+\Omega_{\theta_{0}}^{M L}
$$

where

$$
\Omega_{\theta_{0}}^{M L}=\frac{1}{\sigma_{\xi 0}^{4}}\left(\begin{array}{cccccc}
R_{\lambda \lambda} & R_{\lambda \beta} & R_{\lambda \Gamma} & R_{\lambda \xi} & 0 & \sum_{i=1}^{n} E\left(\xi_{i, n}^{3} \varepsilon_{i, n} G_{i i, n}\right) \\
* & 0 & 0 & \frac{1}{2 \sigma_{\xi 0}^{2}} \sum_{i=1}^{n} E\left(\xi_{i, n}^{3}\right) x_{1, i n}^{\prime} & 0 & 0 \\
* & * & 0 & -\frac{\delta_{0}}{2 \sigma_{\xi 0}^{2}} \sum_{i=1}^{n} E\left(\xi_{i, n}^{3}\right) x_{2, i n}^{\prime} & R_{\Gamma \alpha} & 0 \\
* & * & * & \frac{n}{4 \sigma_{\xi 0}^{4}}\left(\mu_{\xi 4}-3 \sigma_{\xi 0}^{4}\right) & 0 & \frac{1}{2 \sigma_{\xi 0}^{2}} \sum_{i=1}^{n} E\left(\xi_{i, n}^{3} \varepsilon_{i, n}\right) \\
* & * & * & * & \left(R_{\alpha \alpha}\right)_{k j} & 0 \\
* & * & * & * & * & 0
\end{array}\right)
$$

with

$$
\begin{aligned}
R_{\lambda \lambda}= & \sum_{i=1}^{n} E\left[2 \xi_{i, n}^{3} G_{i n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right) G_{i i, n}+G_{i i, n}^{2}\left(\xi_{i, n}^{4}-3 \sigma_{\xi 0}^{4}\right)\right] ; \\
R_{\lambda \beta}= & \sum_{i=1}^{n} E\left(\xi_{i, n}^{3} G_{i i, n}\right) x_{1, i n}^{\prime} ; R_{\lambda \Gamma}=-\delta_{0} \sum_{i=1}^{n} E\left(\xi_{i, n}^{3} G_{i i, n}\right) x_{2, i n}^{\prime} ; \\
R_{\Gamma \alpha}= & \frac{\sigma_{\xi 0}^{4}}{2}\left[l_{n}^{\prime} \otimes E\left(\varepsilon_{i, n}^{\prime} \Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{j}} \Sigma_{\varepsilon 0}^{-1} \varepsilon_{i, n} \Sigma_{\varepsilon 0}^{-1} \varepsilon_{i, n}\right) \otimes I_{k_{2}}\right] \operatorname{vec}\left(X_{2 n}^{\prime}\right) ; \\
\left(R_{\alpha \alpha}\right)_{k j}= & \frac{n \sigma_{\xi 0}^{4}}{4}\left[E\left(\varepsilon_{i, n}^{\prime} \Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{j}} \Sigma_{\varepsilon 0}^{-1} \varepsilon_{i, n} \varepsilon_{i, n}^{\prime} \Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{k}} \Sigma_{\varepsilon 0}^{-1} \varepsilon_{i, n}\right)-\operatorname{tr}\left(\Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{j}}\right) \operatorname{tr}\left(\Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{k}}\right)\right. \\
& \left.-2 \operatorname{tr}\left(\Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{k}} \Sigma_{\varepsilon 0}^{-1} \frac{\partial \Sigma_{\varepsilon 0}}{\partial \alpha_{j}}\right)\right] ; \\
R_{\lambda \xi}= & \frac{1}{2 \sigma_{\xi 0}^{2}} \sum_{i=1}^{n}\left\{E\left[\xi_{i, n}^{3} l_{n}^{\prime} G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)\right]+E\left[\left(\xi_{i, n}^{4}-3 \sigma_{\xi 0}^{4}\right) G_{i i, n}\right]\right\} .
\end{aligned}
$$

B Some basic properties of NED of random fields

In the following proofs, we will adopt asymptotic inference under near-epoch dependence and let $\varsigma_{n}=\left(\varepsilon_{n}, \xi_{n}\right)$ be the basis for NED processes. The following claims are some basic results. The first Claim B.1 is due to the topological structure in Assumption 1. The other claims are some basic properties for NED processes.

Claim B. 1 For any distance ρ, there are at most $c_{5} \rho^{d_{0}}$ points in $B_{i}(\rho)$ and at most $c_{4} \rho^{d_{0}-1}$ points in the space $B_{i}(\rho+1) \backslash B_{i}(\rho)$, where c_{4} and c_{5} are positive constants.

Claim B.1 is directly from Jenish and Prucha (2012) ${ }^{10}$
Claim B. 2 For any random field $T=\left\{T_{i, n}, i \in D_{n}, n \geq 1\right\}$ with $\left\|T_{i, n}\right\|_{p}<\infty,\left\|T_{i, n}-E\left(T_{i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq$ $2\left\|T_{i, n}\right\|_{p}$ with $p \geq 1$.

This result follows from the Minkowski and the conditional Jensen inequalities: $\left\|T_{i, n}-E\left(T_{i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq$ $\left\|T_{i, n}\right\|_{p}+\left\|E\left(T_{i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq 2\left\|T_{i, n}\right\|_{p}$.

Claim B. 3 If $\left\|t_{1 i, n}-E\left(t_{1 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{4} \leq C_{1} \varphi_{1}(s)$ and $\left\|t_{2 i, n}-E\left(t_{2 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{4} \leq C_{2} \varphi_{2}(s)$, with $\max \left(\left\|t_{1 i, n}\right\|_{4},\left\|t_{2 i, n}\right\|_{4}\right) \leq C$, then $\left\|t_{1 i, n} t_{2 i, n}-E\left(t_{1 i, n} t_{2 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{2} \leq C\left(C_{1}+C_{2}\right) \varphi(s)$, where $\varphi(s)=$ $\max \left(\varphi_{1}(s), \varphi_{2}(s)\right)$.

[^8]Proof of Claim B.3. For the product of $t_{1 i, n} t_{2 i, n}$,

$$
\begin{aligned}
& \left\|t_{1 i, n} t_{2 i, n}-E\left(t_{1 i, n} t_{2 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{2} \leq\left\|t_{1 i, n} t_{2 i, n}-E\left(t_{1 i, n} \mid \mathcal{F}_{i, n}(s)\right) E\left(t_{2 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{2} \\
\leq & \left\|t_{2 i, n}\left[t_{1 i, n}-E\left(t_{1 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right]\right\|_{2}+\left\|E\left(t_{1 i, n} \mid \mathcal{F}_{i, n}(s)\right)\left[t_{2 i, n}-E\left(t_{2 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right]\right\|_{2} \\
\leq & \left\|t_{2 i, n}\right\|_{4} \cdot\left\|t_{1 i, n}-E\left(t_{1 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{4}+\left\|t_{1 i, n}\right\|_{4} \cdot\left\|t_{2 i, n}-E\left(t_{2 i, n} \mid \mathcal{F}_{i, n}(s)\right)\right\|_{4} \\
\leq & C\left(C_{1} \varphi_{1}(s)+C_{2} \varphi_{2}(s)\right) \leq C\left(C_{1}+C_{2}\right) \max \left(\varphi_{1}(s), \varphi_{2}(s)\right)
\end{aligned}
$$

The third inequality follows from the Hölder's inequality.
From Jenish and Prucha (2012), we have the following two Claims for LLN and CLT under NED.
Claim B. 4 Under Assumption 1, if the random field $\left\{T_{i, n}, i \in D_{n}, n \geq 1\right\}$ is $L_{1}-N E D$, the base $\left\{\varsigma_{i, n}\right\}$'s are i.i.d., and $\left\{T_{i, n}\right\}$'s are uniformly L_{p} bounded for some $p>1$, then $\frac{1}{n} \sum_{i=1}^{n}\left(T_{i, n}-E T_{i, n}\right) \xrightarrow{L_{1}} 0$.

Claim B. 5 Let $\left\{T_{i, n}, i \in D_{n}, n \geq 1\right\}$ be a random field that is $L_{2}-N E D$ on an i.i.d. random field ς. If Assumption 1 and the following conditions are met:
(1) $\left\{T_{i, n}, i \in D_{n}, n \geq 1\right\}$ is uniformly $L_{2+\delta}$-bounded for some $\delta>0$,
(2) $\inf _{n} \frac{1}{n} \sigma_{n}^{2}>0$ where $\sigma_{n}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} T_{i, n}\right)$,
(3) NED coefficients satisfy $\sum_{r=1}^{\infty} r^{d_{0}-1} \varphi(r)<\infty$,
(4) NED scaling factors satisfy $\sup _{n, i \in D} d_{i, n}<\infty$,
then $\sigma_{n}^{-1} \sum_{i=1}^{n}\left(T_{i, n}-E T_{i, n}\right) \xrightarrow{d} N(0,1)$.

C Proofs of NED Properties for Relevant Statistics

C. 1 NED properties in Case 1 under Assumption 4.1)

Claim C.1.1 Under Assumptions 1, 3.1), and 4.1), $\sup _{n}\left\|W_{n}\right\|_{1}<\infty{ }^{11}$

Proof of Claim C.1.1. For any i, divide the whole space D into subsets $B_{i}(\rho+1) \backslash B_{i}(\rho), \rho=$ $1,2, \ldots$, and $B_{i}(1)$. Under Assumption 4.1), $0 \leq w_{i j, n} \leq c_{1} \rho_{i j}^{-c_{3} d_{0}}$. Then $w_{j i, n} \leq c_{1} \rho^{-c_{3} d_{0}}$ for any $j \in B_{i}(\rho+1) \backslash B_{i}(\rho)$ with $\rho \geq 1$. There are at most $c_{4} \rho^{d_{0}-1}$ points in $B_{i}(\rho+1) \backslash B_{i}(\rho)$. Therefore, $\sum_{j \in B_{i}(\rho+1) \backslash B_{i}(\rho)} w_{j i, n} \leq c_{4} c_{1} \rho^{\left(1-c_{3}\right) d_{0}-1}$. For the special case of $B_{i}(1)$, as $w_{i i, n}=0$, it must be $\rho_{i j}=1$ from Assumption 1 and hence, $w_{j i, n} \leq c_{1}$. Since $D_{n} \subset D=B_{i}(1) \bigcup\left(\cup_{\rho=1}^{\infty} B_{i}(\rho+1) \backslash B_{i}(\rho)\right)$, we have $\sum_{j=1}^{n} w_{j i, n}=\sum_{\rho=0}^{\infty} \sum_{j \in B_{i}(\rho+1) \backslash B_{i}(\rho)} w_{j i, n} \leq c_{4} c_{1}\left(1+\sum_{\rho=1}^{\infty} \rho^{\left(1-c_{3}\right) d_{0}-1}\right)<\infty$ when $c_{3}>1$.

Claim C.1.2 Under Assumptions 1, 3.1), and 4.1), for any n and positive integer $q,\left\|W_{n}^{q}\right\|_{1} \leq(q-$ 1) $c_{u} K c_{w}^{q-1}+c_{u} c_{w}^{q-1} \leq q c_{u} K c_{w}^{q-1}$, where $c_{u}=\sup _{n}\left\|W_{n}\right\|_{1}$ and $c_{w}=\sup _{n}\left\|W_{n}\right\|_{\infty}$.

[^9]Proof of Claim C.1.2. Denote an index set V_{n} with $c_{w} \leq \sum_{j=1}^{n} w_{j i, n}<c_{u}$ if $i \in V_{n}$ and $\sum_{j=1}^{n} w_{j i, n}<c_{w}$ if $i \notin V_{n}$. Then Assumption 3.4.1) constrains that $\left|V_{n}\right| \leq K$ for any n. Consider the k th column sum of W_{n}^{q}, i.e., $e_{n}^{\prime} W_{n}^{q} e_{k, n}$, where $e_{n}=(1, \ldots, 1)^{\prime}$ and $e_{k, n}$ is the unit column vector with one in its k th entry and zeros in its other entries. As $I_{n}=\sum_{i=1}^{n} e_{i, n} e_{i, n}^{\prime}$,

$$
\begin{aligned}
e_{n}^{\prime} W_{n}^{q} e_{k, n} & =\sum_{i=1}^{n} e_{n}^{\prime} W_{n} e_{i, n} e_{i, n}^{\prime} W_{n}^{q-1} e_{k, n}=\sum_{i \in V_{n}} e_{n}^{\prime} W_{n} e_{i, n} e_{i, n}^{\prime} W_{n}^{q-1} e_{k, n}+\sum_{i \notin V_{n}} e_{n}^{\prime} W_{n} e_{i, n} e_{i, n}^{\prime} W_{n}^{q-1} e_{k, n} \\
& \leq K\left(\max _{i \in V_{n}} e_{n}^{\prime} W_{n} e_{i, n}\right)\left(\max _{i \in V_{n}} e_{i, n}^{\prime} W_{n}^{q-1} e_{k, n}\right)+\left(\max _{i \notin V_{n}} e_{n}^{\prime} W_{n} e_{i, n}\right) \sum_{i \notin V_{n}} e_{i, n}^{\prime} W_{n}^{q-1} e_{k, n} \\
& \leq K c_{u}\left\|W_{n}^{q-1}\right\|_{\infty}+c_{w}\left\|W_{n}^{q-1}\right\|_{1} \leq K c_{u} c_{w}^{q-1}+c_{w}\left\|W_{n}^{q-1}\right\|_{1}
\end{aligned}
$$

As this inequality holds for any $k=1, \ldots, n$, we have $\left\|W_{n}^{q}\right\|_{1} \leq c_{u} K c_{w}^{q-1}+c_{w}\left\|W_{n}^{q-1}\right\|_{1}$. By deduction, we have $\left\|W_{n}^{q}\right\|_{1} \leq(q-1) c_{u} K c_{w}^{q-1}+c_{u} c_{w}^{q-1} \leq q c_{u} K c_{w}^{q-1}$.

Claim C.1.3 Under Assumptions 1, 3.1), 3.2), and 4.1), $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{\infty}<\infty$ and $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{1}<$ ∞.

Proof of Claim C.1.3. As $G_{n}(\lambda)=\sum_{l=0}^{\infty} \lambda^{l} W_{n}^{l+1}$ and $\left\|W_{n}^{l+1}\right\|_{\infty} \leq\left\|W_{n}\right\|_{\infty}^{l+1}$, we have

$$
\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{\infty} \leq \sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}|\lambda|^{l}\left\|W_{n}^{l+1}\right\|_{\infty} \leq c_{w} \sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}\left|\lambda c_{w}\right|^{l}<\infty
$$

From Claim C.1.2, $\left\|W_{n}^{l+1}\right\|_{1} \leq c_{u} K(l+1) c_{w}{ }^{l}$, and hence,

$$
\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{1} \leq \sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}|\lambda|^{l}| | W_{n}^{l+1} \|_{1} \leq c_{u} K \sum_{l=0}^{\infty}(l+1) \sup _{\lambda \in \Lambda}\left|\lambda c_{w}\right|^{l}<\infty
$$

Claim C.1.4 Suppose W is an $n \times n$ square matrix which can be decomposed into the sum of two $n \times n$ matrices such that $W=A+B$. Denote $|A|_{\max }=\max \left\{\left|a_{i j}\right|: i, j=1, \ldots, n\right\}$. Then for any positive integer k and any $i, j=1, \ldots, n$,

$$
\left(W^{k}-B^{k}\right)_{i j} \leq|A|_{\max } \sum_{m=0}^{k-1}\|B\|_{\infty}^{m} \cdot\left\|W^{k-1-m}\right\|_{1}
$$

Proof of Claim C.1.4. By expansion, $W^{k}-B^{k}=\sum_{m=0}^{k-1} B^{m} A W^{k-1-m}$. Denote $e_{\text {in }}=(0, \ldots 0,1,0, \ldots, 0)^{\prime}$, which is the i th unit vector of order n, then $\left(W^{k}-B^{k}\right)_{i j}=\sum_{m=0}^{k-1} e_{i n}^{\prime} B^{m} A W^{k-1-m} e_{j n}$. For any matrix M and vector e of dimension n, it is easy to see that $\|M e\|_{\infty} \leq|M|_{\max }\|e\|_{1}$. Thus, for any integer $m=0, \ldots, k-1$,

$$
\begin{aligned}
e_{i n}^{\prime} B^{m} A W^{k-1-m} e_{j n} & \leq\left\|B^{\prime m} e_{i n}\right\|_{1} \cdot\left\|A W^{k-1-m} e_{j n}\right\|_{\infty} \leq\left\|B^{m}\right\|_{\infty} \cdot\left|A W^{k-1-m}\right|_{\max } \\
& \leq|A|_{\max } \cdot\left\|B^{m}\right\|_{\infty} \cdot\left\|W^{k-1-m}\right\|_{1}
\end{aligned}
$$

Together, we have the result.
Claim C.1.5 For any $\alpha>0$ and $s \geq 2, \sum_{\rho=[s]} \rho^{-\alpha-1}<\frac{3^{\alpha}}{\alpha} s^{-\alpha}$, where $[s]$ denotes the largest integer less than or equal to s.

Proof of Claim C.1.5. For any $\rho_{0} \geq 2$,

$$
\frac{\rho_{0}^{-\alpha}}{\alpha}=\int_{\rho_{0}}^{\infty} x^{-\alpha-1} d x<\sum_{\rho=\rho_{0}} \rho^{-\alpha-1}<\int_{\rho_{0}-1}^{\infty} x^{-\alpha-1} d x=\frac{\left(\rho_{0}-1\right)^{-\alpha}}{\alpha} \leq \frac{2^{\alpha} \rho_{0}^{-\alpha}}{\alpha}
$$

The last inequality holds because $\rho_{0}-1 \geq \rho_{0} / 2$ and hence $\left(\rho_{0}-1\right)^{-\alpha} \leq 2^{\alpha} \rho_{0}^{-\alpha}$. Therefore, we can find a positive constant $1 / \alpha<c_{\alpha 1}<2^{\alpha} / \alpha$ such that $\sum_{\rho=\rho_{0}} \rho^{-\alpha-1}=c_{\alpha 1} \rho_{0}^{-\alpha}$. Now with $1 \leq s /[s]<1+(s-$ $[s]) /[s]<3 / 2$, there exists a constant $1<c_{\alpha 2}<(3 / 2)^{\alpha}$ such that $c_{\alpha 2} s^{-\alpha}=[s]^{-\alpha}$. Together, we have $\sum_{\rho=[s]} \rho^{-\alpha-1}=c_{\alpha 1} c_{\alpha 2} s^{-\alpha}<\left(3^{\alpha} / \alpha\right) s^{-\alpha}$.

Claim C.1.6 Let $t_{i, n}(m)$ be the ith element of the vector $W_{n}^{m} \varsigma_{n}^{*} a$, where $\varsigma_{i, n}^{*}=f_{i}\left(\varsigma_{i, n}, X_{n}\right)$ with $\varsigma_{n}=\left(\varepsilon_{n}, \xi_{n}\right)$ is a vector-valued function and a is any conformable vector of constants. Under Assumptions 1, 3.1), and 4.1), suppose $\sup _{i, n}\left\|\varsigma_{i, n}^{*}\right\|_{p}<\infty$, then $\sup _{i, n}\left\|t_{i, n}(m)\right\|_{p} \leq m^{c_{3} d_{0}+2} c_{w}^{m} C_{a p}$ and
$\sup _{i, n}\left\|t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq C_{a p} c_{w}^{m} m^{3+c_{3} d_{0}} s^{\left(2-c_{3}\right) d_{0}}$ with $C_{a p}$ being a finite constant.
Proof of Claim C.1.6. First we show that $\left\|t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq C_{a p} c_{w}^{m} m^{3+c_{3} d_{0}} s^{\left(2-c_{3}\right) d_{0}}$ for any i and n. Note that for any integer $1 \leq k \leq m$ and $i_{k} \notin B_{i}(s)$, we can show that

$$
\begin{equation*}
\left(W_{n}^{k}\right)_{i i_{k}} \leq C_{0} m^{c_{3} d_{0}+2} c_{w}^{k} \rho_{i i_{k}}^{-c_{3} d_{0}} \text { and } \sum_{i_{k} \notin B_{i}(s)}\left(W_{n}^{k}\right)_{i i_{k}} \leq C_{1} c_{w}^{k} m^{c_{3} d_{0}+2} s^{\left(1-c_{3}\right) d_{0}} \tag{C.1}
\end{equation*}
$$

with C_{0} and C_{1} being positive constants, not depend on k. To show this, we construct two matrices A_{n} and B_{n} as follows: $a_{i j, n}=w_{i j, n} I\left(w_{i j, n} \leq c_{1}\left(\rho_{i i_{k}} / m\right)^{-c_{3} d_{0}}\right)$ and $b_{i j, n}=w_{i j, n} I\left(w_{i j, n}>c_{1}\left(\rho_{i i_{k}} / m\right)^{-c_{3} d_{0}}\right)$, then $W_{n}=A_{n}+B_{n}$ and $a_{i j, n} b_{i j, n}=0$. As $i_{k} \notin B_{i}(s)$, at least one of the items $w_{i i_{1}, n}, w_{i_{1} i_{2}, n}, \cdots, w_{i_{k-1} i_{k}, n}$, say $w_{i_{q-1} i_{q}, n}$, satisfies that $w_{i_{q-1} i_{q}, n} \leq c_{1}\left(\rho_{i i_{k}} / k\right)^{-c_{3} d_{0}} \leq c_{1}\left(\rho_{i i_{k}} / m\right)^{-c_{3} d_{0}}$, because there exist at least two neighboring nodes in the chain $i \rightarrow i_{1} \rightarrow \cdots \rightarrow i_{k}$ such that their distance is at least $\rho_{i i_{k}} / k$. Hence, $\left(B_{n}^{k}\right)_{i i_{k}}=\sum_{i_{1}} \cdots \sum_{i_{(k-1)}} w_{i i_{1}, n} w_{i_{1} i_{2}, n} \cdots w_{i_{(k-1)} i_{k}, n} I\left(\right.$ all $\left.w^{\prime} s>c_{1}\left(\rho_{i i_{k}} / m\right)^{-c_{3} d_{0}}\right)=0$, and we have

$$
\begin{aligned}
\left(W_{n}^{k}\right)_{i i_{k}} & =\left(W_{n}^{k}-B_{n}^{k}\right)_{i i_{k}} \leq\left|A_{n}\right|_{\max } \sum_{q=0}^{k-1}\left\|B_{n}\right\|_{\infty}^{q}\left\|W_{n}^{k-1-q}\right\|_{1} \leq c_{1}\left(\frac{\rho_{i i_{k}}}{m}\right)^{-c_{3} d_{0}} \sum_{q=0}^{k-1} c_{w}^{q}(k-1-q) K c_{u} c_{w}^{k-q-2} \\
& \leq K c_{u} c_{1}\left(\rho_{i i_{k}} / m\right)^{-c_{3} d_{0}} k^{2} c_{w}^{k-2} \leq C_{0} m^{c_{3} d_{0}+2} c_{w}^{k} \rho_{i i_{k}}^{-c_{3} d_{0}}
\end{aligned}
$$

where the first inequality is from Claim C.1.4 the second one is from Claim C.1.2 and all elements in A_{n} are $\leq c_{1}\left(\rho_{i i_{k}} / m\right)^{-c_{3} d_{0}}$. And hence, for any i,

$$
\sum_{i_{k} \notin B_{i}(s)}\left(W_{n}^{k}\right)_{i i_{k}} \leq C_{0} m^{c_{3} d_{0}+2} c_{w}^{k} \sum_{i_{k} \notin B_{i}(s)} \rho_{i i_{k}}^{-c_{3} d_{0}} \leq C_{0} m^{c_{3} d_{0}+2} c_{w}^{k} c_{4} \sum_{\rho=[s]}^{\infty} \rho^{\left(1-c_{3}\right) d_{0}-1} \leq C_{1} c_{w}^{k} m^{c_{3} d_{0}+2} s^{\left(1-c_{3}\right) d_{0}}
$$

The last inequality is from Claim C.1.5
Any chain of W_{n}^{m} starting from i in $t_{i, n}(m)$ involves m steps. We can divide these chains into two sets: one set has all its paths staying within $B_{i}(s)$, and the other set has some paths falling outside of $B_{i}(s)$. For the first set with all nodes in $B_{i}(s)$, obviously $t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)=0$. For the second set, divide it into m mutually exclusive subsets:
(i) $\sum_{i_{m} \notin B_{i}(s)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a$;
(ii) $\sum_{i_{m-1} \notin B_{i}(s)} \sum_{i_{m} \in B_{i}(s)}\left(W_{n}^{m-1}\right)_{i i_{m-1}} w_{i_{m-1} i_{m}, n} \varsigma_{i_{m}, n}^{*} a$; etc.

Such subset can be written as $\sum_{i_{m-k} \notin B_{i}(s)} \sum_{i_{m-k+1} \in B_{i}(s)} \cdots \sum_{i_{m} \in B_{i}(s)}\left(W_{n}^{m-k}\right)_{i i_{m-k}} w_{i_{m-k} i_{m-k+1}} \cdots w_{i_{m-1} i_{m}, n} \varsigma_{i_{m}, n}^{*} a$ for $k=0, \ldots m-1$.

Consider (i): As

$$
\left|\sum_{i_{m} \notin B_{i}(s)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a\right| \leq \sum_{i_{m} \notin B_{i}(s)}\left(W_{n}^{m}\right)_{i i_{m}}\left|\varsigma_{i_{m}, n}^{*} a\right| \leq \sum_{i_{m} \notin B_{i}(s)}\left|\varsigma_{i_{m}, n}^{*} a\right| C_{0} m^{c_{3} d_{0}+2} c_{w}^{m} \rho_{i i_{m}}^{-c_{3} d_{0}}
$$

we have

$$
\begin{equation*}
\left\|\sum_{i_{m} \notin B_{i}(s)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a\right\|_{p} \leq c_{a p} C_{0} m^{c_{3} d_{0}+2} c_{w}^{m} \sum_{\rho=[s]}^{\infty} c_{4} \rho^{\left(1-c_{3}\right) d_{0}-1} \leq C_{2} c_{a p} m^{c_{3} d_{0}+2} c_{w}^{m} s^{\left(1-c_{3}\right) d_{0}} \tag{C.2}
\end{equation*}
$$

where $c_{a p}=\left(E\left|\varsigma_{i_{m}, n} a\right|^{p}\right)^{1 / p}$ for any i_{m} and n. For (ii),

$$
\left|\sum_{i_{m-1} \notin B_{i}(s)} \sum_{i_{m} \in B_{i}(s)}\left(W_{n}^{m-1}\right)_{i i_{m-1}} w_{i_{m-1} i_{m}, n}\right| \leq\left\|W_{n}\right\|_{\infty} \sum_{i_{m-1} \notin B_{i}(s)}\left(W_{n}^{m-1}\right)_{i i_{m-1}} \leq c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(1-c_{3}\right) d_{0}} C_{1}
$$

and hence,

$$
\begin{aligned}
& \left\|\sum_{i_{m-1} \notin B_{i}(s)} \sum_{i_{m} \in B_{i}(s)}\left(W_{n}^{m-1}\right)_{i i_{m-1}} w_{i_{m-1} i_{m}, n} s_{i_{m}, n}^{*} a\right\|_{p} \leq C_{1} c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(1-c_{3}\right) d_{0}} \sum_{i_{m} \in B_{i}(s)} c_{a p} \\
& \leq C_{1} c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(1-c_{3}\right) d_{0}} c_{5} s^{d_{0}} c_{a p} \leq C_{3} c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(2-c_{3}\right) d_{0}} c_{a p} \text { by C.1). }
\end{aligned}
$$

And similarly, for subset (k) with $i_{m-k} \notin B_{i}(s)$ where $1 \leq k \leq m-1$, we have

$$
\begin{gathered}
\sum_{i_{m-k} \notin B_{i}(s)} \sum_{i_{m-k+1} \in B_{i}(s)} \cdots \sum_{i_{m} \in B_{i}(s)}\left(W_{n}^{m-k}\right)_{i i_{m-k}} w_{i_{m-k} i_{m-k+1}} \cdots w_{i_{m-1} i_{m}, n} \leq\left\|W_{n}^{k}\right\|_{\infty} \sum_{i_{m-k} \notin B_{i}(s)}\left(W_{n}^{m-k}\right)_{i i_{m-k}} \\
\leq c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(1-c_{3}\right) d_{0}} C_{1}, \text { because }\left\|W_{n}^{k}\right\|_{\infty} \leq c_{w}^{k}
\end{gathered}
$$

Hence,
$\left\|\sum_{i_{m-k} \notin B_{i}(s)} \sum_{i_{m-k+1} \in B_{i}(s)} \ldots \sum_{i_{m} \in B_{i}(s)}\left(W_{n}^{m-k}\right)_{i i_{m-k}} w_{i_{m-k} i_{m-k+1}} \cdots w_{i_{m-1} i_{m}, n} \varsigma_{i_{m}, n}^{*} a\right\|_{p} \leq C_{3} c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(2-c_{3}\right) d_{0}} c_{a p}$.
These together imply
$\left\|t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq 2 \|$ summation of paths in $t_{i, n}(m)$ with at least one node $i_{m-k} \notin B_{i}(s) \|_{p}$ $\leq 2\left(C_{2} m^{c_{3} d_{0}+2} c_{w}^{m} s^{\left(1-c_{3}\right) d_{0}} c_{a p}+C_{3} \sum_{k=1}^{m-1} c_{w}^{m} m^{c_{3} d_{0}+2} s^{\left(2-c_{3}\right) d_{0}} c_{a p}\right) \leq c_{w}^{m} m^{c_{3} d_{0}+3} s^{\left(2-c_{3}\right) d_{0}} C_{a p}$.

To conclude, for any integer $m,\left\|t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq C_{a p} c_{w}^{m} m^{3+c_{3} d_{0}} \varphi(s)$ with $\varphi(s)=s^{\left(2-c_{3}\right) d_{0}}$.
Now we show $\left\|t_{i, n}(m)\right\|_{p} \leq c_{w}^{m} C_{a p 1}$. Divide the whole space D into exclusive subsets $B_{i}(1)$ and $B_{i}(\rho+$ $1) \backslash B_{i}(\rho), \rho=1,2, \cdots$. Consider the case with $i_{m} \in B_{i}(\rho+1) \backslash B_{i}(\rho)$. For each $\rho \geq 1$, from equation (C.2), we have

$$
\left\|\sum_{i_{m} \in B_{i}(\rho+1) \backslash B_{i}(\rho)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a\right\|_{p} \leq C_{2} c_{a p} m^{c_{3} d_{0}+2} c_{w}^{m} \rho^{\left(1-c_{3}\right) d_{0}}
$$

For $B_{i}(1)$, there are two cases: $i_{m}=i$ and $i_{m} \neq i$. For the case $i_{m}=i$, we have $\left\|\left(W_{n}^{m}\right)_{i i} s_{i, n}^{*} a\right\|_{p} \leq c_{a p} c_{w}^{m}$. For the case $i_{m} \neq i$, it must be $\rho_{i i_{m}}=1$ from Assumption 1. Hence, $\left\|\sum_{i_{m}, \rho_{i i_{m}}=1}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a\right\|_{p} \leq c_{a p} c_{5} c_{w}^{m}$. Since

$$
t_{i, n}(m)=e_{i, n} W_{n}^{m} \varsigma_{n}^{*} a=\sum_{\rho=1}^{\infty} \sum_{i_{m} \in B_{i}(\rho+1) \backslash B_{i}(\rho)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a+\sum_{i_{m} \in B_{i}(1)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a
$$

we have

$$
\begin{aligned}
\left\|t_{i, n}(m)\right\|_{p} & \leq \sum_{\rho=1}^{\infty}\left\|\sum_{i_{m} \in B_{i}(\rho+1) \backslash B_{i}(\rho)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a\right\|_{p}+\left\|\sum_{i_{m} \in B_{i}(1)}\left(W_{n}^{m}\right)_{i i_{m}} \varsigma_{i_{m}, n}^{*} a\right\|_{p} \\
& \leq C_{2} c_{a p} m^{c_{3} d_{0}+2} c_{w}^{m} \sum_{\rho=1}^{\infty} \rho^{\left(1-c_{3}\right) d_{0}}+c_{a p} c_{5} c_{w}^{m}+c_{w}^{m} c_{a p} \leq m^{c_{3} d_{0}+2} c_{w}^{m} C_{a p}
\end{aligned}
$$

Claim C.1.7 Let $g_{i, n}(m)=e_{i, n}^{\prime} G_{n}^{m}(\lambda) \varsigma_{n}^{*} a$, where ς_{n}^{*} and a are the same as Claim C.1.6. Under Assumptions 1, 3.1), and 4.1), suppose $\sup _{i, n}\left\|\varsigma_{i, n}^{*}\right\|_{p}<\infty$, then $\sup _{i, n}\left\|g_{i, n}(m)\right\|_{p}<\infty$ and $\sup _{i, n} \| g_{i, n}(m)-$
$E\left(g_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right) \|_{p} \leq C_{a p m} s^{\left(2-c_{3}\right) d_{0}}$ with $C_{\text {apm }}$ being a finite constant.
Proof of Claim C.1.7. Suppose $|x|<1$, taking the $(m-1)$ th order derivative on both sides of $(1-x)^{-1}=$ $\sum_{k=0}^{\infty} x^{k}$, we have $(1-x)^{-m}(m-1)!=\sum_{k=m-1}^{\infty} k(k-1) \cdots(k-m+2) x^{k-(m-1)}$. Hence, $G_{n}^{m}(\lambda)=$ $\left(I_{n}-\lambda W_{n}\right)^{-m} W_{n}^{m}=\sum_{l=0}^{\infty} C_{l}^{l+m-1} \lambda^{l} W_{n}^{l+m}$, where C_{l}^{l+m-1} is a binomial coefficient, and by using the results for $t_{i, n}(l+m)$ in Claim C.1.6. we have

$$
\left\|g_{i, n}(m)\right\|_{p} \leq \sum_{l=0}^{\infty}(l+m-1)^{m-1}|\lambda|^{l}| | t_{i, n}(l+m) \|_{p} \leq c_{w}^{m} C_{a p} \sum_{l=0}^{\infty}(l+m)^{m+c_{3} d_{0}+1}\left|\lambda c_{w}\right|^{l}<\infty
$$

and

$$
\begin{aligned}
\left\|g_{i, n}(m)-E\left(g_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} & \leq \sum_{l=0}^{\infty}(l+m-1)^{m-1}|\lambda|^{l}\left\|t_{i, n}(l+m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \\
& \leq C_{a p} \sum_{l=0}^{\infty}|\lambda|^{l} c_{w}^{l+m}(l+m)^{m+2+c_{3} d_{0}} s^{\left(2-c_{3}\right) d_{0}} \leq C_{a p m} s^{\left(2-c_{3}\right) d_{0}}
\end{aligned}
$$

C. 2 NED properties in Case 2 under Assumption 4.2)

Claim C.2.1 Under Assumptions 1, 3.1), and 4.2), for any positive integer $q, \sup _{n}\left\|W_{n}^{q}\right\|_{1} \leq c_{w}^{q} c_{5} \rho_{c}^{d_{0}}$.
Proof of Claim C.2.1. Consider the k th column sum of W_{n}^{q}, as all elements in W_{n} are non-negative,

$$
e_{n}^{\prime} W_{n}^{q} e_{k, n}=\sum_{i=1}^{n} e_{n}^{\prime} W_{n}^{q-1} e_{i, n} e_{i, n}^{\prime} W_{n} e_{k, n} \leq\left\|W_{n}^{q-1}\right\|_{\infty} \cdot \sum_{i=1}^{n} e_{i, n}^{\prime} W_{n} e_{k, n}
$$

Under Assumption 4.2), $w_{i j, n}=0$ if $j \notin B_{i}\left(\rho_{c}\right)$, so $\sum_{i=1}^{n} e_{i, n}^{\prime} W_{n} e_{k, n}=\sum_{i \in B_{k}\left(\rho_{c}\right)} w_{i k, n} \leq c_{w} c_{5} \rho_{c}^{d_{0}}$. Hence, $e_{n}^{\prime} W_{n}^{q} e_{k, n} \leq c_{w}^{q} c_{5} \rho_{c}^{d_{0}}$. As " \leq " holds for any k and n, we have $\sup _{n}\left\|W_{n}^{q}\right\|_{1} \leq c_{w}^{q} c_{5} \rho_{c}^{d_{0}}$.

Claim C.2.2 Under Assumptions 1, 3.1), 3.2), and 4.2), $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{\infty}<\infty$ and $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{1}<$ ∞.

Proof of Claim C.2.2. As $G_{n}(\lambda)=\sum_{l=0}^{\infty} \lambda^{l} W_{n}^{l+1}$ and $\sup _{\lambda \in \Lambda}\left|\lambda c_{w}\right|<1$, we have $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{\infty} \leq$ $\sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}|\lambda|^{l}| | W_{n}^{l+1} \|_{\infty} \leq c_{w} \sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}\left|\lambda c_{w}\right|^{l}<\infty$. By Claim C.2.1 on $\left\|W_{n}^{l}\right\|_{1}$,

$$
\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{1} \leq \sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}|\lambda|^{l}| | W_{n}^{l+1} \|_{1} \leq c_{w} c_{5} \rho_{c}^{d_{0}} \sum_{l=0}^{\infty} \sup _{\lambda \in \Lambda}\left|\lambda c_{w}\right|^{l}<\infty
$$

Claim C.2.3 If the i, j th element of W_{n}^{m} is not zero, then $\rho_{i j} \leq m \rho_{c}$.
Proof of Claim C.2.3. The i, j th element of W_{n}^{m} is $\sum_{i_{1}} \sum_{i_{2}} \cdots \sum_{i_{m-1}} w_{i i_{1}, n} w_{i_{1} i_{2}, n} \cdots w_{i_{m-1} j, n}$. If it is not zero, then there exists at least one path $i \rightarrow i_{1} \rightarrow \cdots i_{m-1} \rightarrow j$ such that all $w_{i i_{1}, n}, w_{i_{1} i_{2}, n}, \cdots, w_{i_{m-1} j, n}$ are positive. As $w_{i j, n}=0$ if $j \notin B_{i}\left(\rho_{c}\right)$, it must be $i_{1} \in B_{i}\left(\rho_{c}\right), i_{2} \in B_{i_{1}}\left(\rho_{c}\right), \ldots, j \in B_{i_{m-1}}\left(\rho_{c}\right)$. Therefore, $\rho_{i j} \leq \rho_{i i_{1}}+\rho_{i_{1} i_{2}}+\ldots+\rho_{i_{m-1} j} \leq m \rho_{c}$.

Claim C.2.4 For any positive integer p and $0<q<1$, if $s \geq p /(-\ln q)+1$, then there exists a finite constant c such that $\sum_{l=[s]} l^{p} q^{l}<c s^{p} q^{s}$, where $[s]$ denotes the largest integer less than or equal to s.

Proof of Claim C.2.4. Let $f(x)=x^{p} q^{x}$, then $f^{\prime p-1} q^{x}(p+x \ln q)<0$ if $x>p /(-\ln q)$. As $s \geq$ $p /(-\ln q)+1$,

$$
\sum_{l=s} l^{p} q^{l}<\int_{s}^{\infty} x^{p} q^{x} d x=-\frac{s^{p} q^{s}}{\ln q}-\frac{p}{\ln q} \int_{s}^{\infty} x^{p-1} q^{x} d x<c_{0} s^{p} q^{s}
$$

where c_{0} is a constant. The first inequality holds because the sequence $l^{p} q^{l}$ is monotonically decreasing when $l>p /(-\ln q)$. The equality is from integration by parts, and the last inequality is from induction for $\int_{s}^{\infty} x^{r} q^{x} d x$ for $r=0,1, \ldots p$. Therefore, $\sum_{l=[s]} l^{p} q^{l}<\sum_{l=s-1} l^{p} q^{l}<c_{0}(s-1)^{p} q^{s-1}<c s^{p} q^{s}$.

Claim C.2.5 Let $t_{i, n}(m)=e_{i, n}^{\prime} W_{n}^{m} \varsigma_{n}^{*} a$, where ς_{n}^{*} and a are the same as Claim C.1.6. Under Assumptions 1. 3.1) and 4.2), suppose $\sup _{i, n}\left\|\varsigma_{i, n}^{*}\right\|_{p}<\infty$, then $\sup _{i, n}\left\|t_{i, n}(m)\right\|_{p} \leq C_{a p} m^{d_{0}} c_{w}^{m}$ and $\sup _{i, n} \| t_{i, n}(m)-$ $E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right) \|_{p} \leq C_{a p 1} \varphi(s)$ with $C_{a p}$ and $C_{a p 1}$ being positive constants; $\varphi(s)=1$ if $s \leq m \rho_{c}$ and $\varphi(s)=0$ if $s>m \rho_{c}$.

Proof of Claim C.2.5. From Claim C.2.3. $e_{i, n}^{\prime} W_{n}^{m} e_{k, n}=0$ if $k \notin B_{i}\left(m \rho_{c}\right)$. Therefore,

$$
\left|t_{i, n}(m)\right|=\left|\sum_{k} e_{i, n}^{\prime} W_{n}^{m} e_{k, n} e_{k, n}^{\prime} \varsigma_{n}^{*} a\right|=\left|\sum_{k \in B_{i}\left(m \rho_{c}\right)} e_{i, n}^{\prime} W_{n}^{m} e_{k, n} e_{k, n}^{\prime} \varsigma_{n}^{*} a\right| \leq \max _{k, n}\left|e_{i, n}^{\prime} W_{n}^{m} e_{k, n}\right| \sum_{k \in B_{i}\left(m \rho_{c}\right)}\left|\varsigma_{k, n}^{*} a\right|
$$

and hence,

$$
\left\|t_{i, n}(m)\right\|_{p} \leq c_{w}^{m} \sum_{k \in B_{i}\left(m \rho_{c}\right)}\left\|\varsigma_{k, n}^{*} a\right\|_{p} \leq c_{w}^{m} c_{5}\left(m \rho_{c}\right)^{d_{0}} c_{a p}=C_{a p} c_{w}^{m} m^{d_{0}}
$$

where $c_{a p}=\sup _{i, n}\left\|\varsigma_{i, n}^{*} a\right\|_{p}$ and $C_{a p}=c_{a p} c_{5} \rho_{c}^{d_{0}}$.
Next, we show the NED property. For the spatial weight matrix without row-normalization, $w_{i j, n}$ is a function of $\varsigma_{i, n}$ and $\varsigma_{j, n}$, and $w_{i j, n}=0$ if $j \notin B_{i}\left(\rho_{c}\right)$. For the row-normalized case, $w_{i j, n}$ may be related to many points in $B_{i}\left(\rho_{c}\right)$ and in general is a function of ς 's at those locations. In both cases, all the locations of nodes in the chains of $e_{i, n}^{\prime} W_{n}^{m}$ related to $t_{i, n}(m)$ are within the ball $B_{i}\left(m \rho_{c}\right)$. Hence, when $s>m \rho_{c}$, $t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)=0$. With $s \leq m \rho_{c}$,

$$
\left\|t_{i, n}(m)-E\left(t_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq 2\left\|t_{i, n}(m)\right\|_{p} \leq 2 C_{a p} c_{w}^{m} m^{d_{0}}
$$

Therefore, the NED property follows if we choose $\varphi(s)=1$ for $s \leq m \rho_{c}$ and $\varphi(s)=0$ for $s>m \rho_{c}$.

Claim C.2.6 Denote $g_{i, n}(m)=e_{i, n} G_{n}^{m}(\lambda) \varsigma_{n}^{*} a$, where ς_{n}^{*} and a are the same as Claim C.1.6. Under Assumptions 1. 3.1), and 4.2), suppose $\sup _{i, n}\left\|\varsigma_{i, n}^{*}\right\|_{p}<\infty$, then $\sup _{i, n}\left\|g_{i, n}(m)\right\|_{p}<\infty$ and $\sup _{i, n} \| g_{i, n}(m)-$ $E\left(g_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right) \|_{p} \leq C_{a p m} \varphi(s)$ with $C_{a p m}$ being a finite constant; $\varphi(s)=1$ if $s \leq m \rho_{c}$ and $\varphi(s)=$ $s^{d_{0}+m-1}\left|\lambda c_{w}\right|^{s / \rho_{c}}$ if $s>m \rho_{c}$.

Proof of Claim C.2.6. From the proof of Claim C.1.7, $g_{i, n}(m)=\sum_{l=0}^{\infty} C_{l}^{l+m-1} \lambda^{l} t_{i, n}(l+m)$. If $\lambda=0$, then $g_{i, n}(m)=t_{i, n}(m)$ and the Claim follows from ClaimC.2.5. For $\lambda \neq 0$, by ClaimC.2.5. for any i and n,

$$
\left\|g_{i, n}(m)\right\|_{p} \leq c_{w}^{m} C_{a p} \sum_{l=0}^{\infty}\left|\lambda c_{w}\right|^{l}(l+m)^{d_{0}+m-1}
$$

which is finite and denoted as C_{m}. Thus, for $s>0,\left\|g_{i, n}(m)-E\left(g_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p} \leq 2\left\|g_{i, n}(m)\right\|_{p} \leq 2 C_{m}$. Now consider the case when $s>m \rho_{c}$. Given such an s, from Claim C.2.5, $t_{i, n}(m+l)-E\left(t_{i, n}(m+l) \mid \mathcal{F}_{i, n}(s)\right)=$ 0 for any nonnegative integer l such that $s>(m+l) \rho_{c}$. Such a set of l will be determined by $l<\left(\frac{s}{\rho_{c}}-m\right)$. Therefore, when $s>m \rho_{c}$,

$$
\begin{aligned}
& \left\|g_{i, n}(m)-E\left(g_{i, n}(m) \mid \mathcal{F}_{i, n}(s)\right)\right\|_{p}=\left\|\sum_{l=\left[\frac{s}{\rho_{c}}-m\right]}^{\infty} C_{l}^{l+m-1} \lambda^{l}\left[t_{i, n}(l+m)-E\left(t_{i, n}(l+m) \mid \mathcal{F}_{i, n}(s)\right)\right]\right\|_{p} \\
\leq & 2 \sum_{l=\left[\frac{s}{\rho_{c}}-m\right]}^{\infty}(l+m)^{m-1}|\lambda|^{l}\left\|t_{i, n}(l+m)\right\|_{p} \leq 2 C_{a p} c_{w}^{m} \sum_{l=\left[\frac{s}{\rho_{c}}-m\right]}^{\infty}\left|\lambda c_{w}\right|^{l}(l+m)^{m-1+d_{0}},
\end{aligned}
$$

where the last inequality follows from Claim C.2.5. By the inequality in Claim C.2.4 as $s / \rho_{c}>m$, we have

$$
\sum_{l=\left[\frac{s}{\rho_{c}}-m\right]}^{\infty}\left|\lambda c_{w}\right|^{l+m}(l+m)^{m-1+d_{0}} /|\lambda|^{m}=\sum_{l=\left[\frac{s}{\rho_{c}}\right]}^{\infty}\left|\lambda c_{w}\right|^{l} l^{m-1+d_{0}} /|\lambda|^{m}=O\left(s^{m+d_{0}-1}\left|\lambda c_{w}\right|^{s / \rho_{c}}\right)
$$

The Claim would follow if we set $\varphi(s)=1$ if $s \leq m \rho_{c}$ and $\varphi(s)=s^{d_{0}+m-1}\left|\lambda c_{w}\right|^{s / \rho_{c}}$ if $s>m \rho_{c}$.

C. 3 Proofs of main results

Proof of Proposition 1. As $M_{n}=A_{n}^{\prime} B_{n}$, if we denote $a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b=\sum_{i=1}^{n} q_{i, n}$, then $q_{i, n}=a_{i, n}^{*} b_{i, n}^{*}$, where $a_{i, n}^{*}=e_{i, n} A_{n} \varsigma_{n}^{*} a$ and $b_{i, n}^{*}=e_{i, n} B_{n} \varsigma_{n}^{*} b$ can be either $t_{i, n}\left(m_{1}\right)$ or $g_{i, n}\left(m_{2}\right)$ for any finite integers m_{1} and m_{2}. Under Assumption 4.1), Claims C.1.6 C.1.7, and B.3 give us $\left\|q_{i, n}\right\|_{p / 2} \leq\left\|a_{i, n}^{*}\right\|_{p} \cdot\left\|b_{i, n}^{*}\right\|_{p}<\infty$ and $\left\|q_{i, n}-E\left[q_{i, n} \mid \mathcal{F}_{i, n}(s)\right]\right\|_{2} \leq C_{m} s^{\left(2-c_{3}\right) d_{0}}$, with C_{m} being a finite constant. Under Assumption 4.2) Claims C.2.5. C.2.6 and B.3 give us $\left\|q_{i, n}\right\|_{p / 2} \leq\left\|a_{i, n}^{*}\right\|_{p} \cdot\left\|b_{i, n}^{*}\right\|_{p}<\infty$ and $\left\|q_{i, n}-E\left[q_{i, n} \mid \mathcal{F}_{i, n}(s)\right]\right\|_{2} \leq C_{q} \varphi(s)$ with $\varphi(s)=1$ if $s \leq s_{m}$ and $\varphi(s)=s^{d_{0}+m-1}\left|\lambda c_{w}\right|^{s / \rho_{c}}$ if $s>s_{m}$, where C_{m} and s_{m} are some finite constants. For both cases of W_{n}, conditions in Claim B.4 are satisfied. Therefore, $\frac{1}{n} E\left|a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b\right|=O(1)$ and $\frac{1}{n}\left[a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b-E\left(a^{\prime} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b\right)\right]=o_{p}(1)$.

Proof of Corollary 1. We have $\frac{1}{n}\left[a^{\prime} \varsigma_{n}^{*}(\theta)^{\prime} G_{n}^{m_{1}}(\lambda)^{\prime} G_{n}^{m_{2}}(\lambda) \varsigma_{n}^{*}(\theta) b-E\left(a^{\prime} \varsigma_{n}^{*}(\theta) G_{n}^{m_{1}}(\lambda)^{\prime} G_{n}^{m_{2}}(\lambda) \varsigma_{n}^{*}(\theta) b\right)\right]=$ $o_{p}(1)$ pointwisely for any θ from Proposition 1 . As θ enters $\varsigma_{n}^{*}(\theta)$ polynomially and the parameter space of θ is compact, to show the ULLN, we only need to show the stochastic equicontinuity of $\frac{1}{n} a^{\prime} \varsigma_{n}^{* \prime} G_{n}^{m_{1}}(\lambda)^{\prime} G_{n}^{m_{2}}(\lambda) \varsigma_{n}^{*} b$. By the mean value theorem,

$$
\begin{aligned}
& \left|a^{\prime} \varsigma_{n}^{* \prime} G_{n}^{m_{1}}\left(\lambda_{1}\right)^{\prime} G_{n}^{m_{2}}\left(\lambda_{1}\right) \varsigma_{n}^{*} b-a^{\prime} \varsigma_{n}^{* \prime} G_{n}^{m_{1}}\left(\lambda_{2}\right)^{\prime} G_{n}^{m_{2}}\left(\lambda_{2}\right) \varsigma_{n}^{*} b\right|=\left|\left(\lambda_{1}-\lambda_{2}\right) a^{\prime} \varsigma_{n}^{* \prime} A_{n}(\bar{\lambda}) \varsigma_{n}^{*} b\right| \\
\leq & \left|\lambda_{1}-\lambda_{2}\right|\left(a^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} a\right)^{\frac{1}{2}}\left(b^{\prime} \varsigma_{n}^{* \prime} A_{n}(\bar{\lambda})^{\prime} A_{n}(\bar{\lambda}) \varsigma_{n}^{*} b\right)^{\frac{1}{2}} \leq\left|\lambda_{1}-\lambda_{2}\right|\left(a^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} a\right)^{\frac{1}{2}}\left(b^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} b\right)^{\frac{1}{2}}\left[\mu_{\max }\left(A_{n}(\bar{\lambda})^{\prime} A_{n}(\bar{\lambda})\right)\right]^{\frac{1}{2}} \\
\leq & \left|\lambda_{1}-\lambda_{2}\right|\left(a^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} a\right)^{1 / 2}\left(b^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} b\right)^{1 / 2}\left(\sup _{\lambda \in \Lambda}\left\|A_{n}^{\prime}(\lambda) A_{n}(\lambda)\right\|_{\infty}\right)^{1 / 2},
\end{aligned}
$$

where $\bar{\lambda}$ is between λ_{1} and $\lambda_{2}, A_{n}(\lambda)=G_{n}^{m_{1}}(\lambda)^{\prime}\left[m_{2} G_{n}(\lambda)+m_{1} G_{n}^{m_{1}}(\lambda)^{\prime}\right] G_{n}^{m_{2}}(\lambda)$, and $\mu_{\max }(\cdot)$ is the largest eigenvalue of the matrix inside. The first inequality is from the Cauchy-Schwarz inequality, the second inequality holds as $A_{n}(\bar{\lambda})^{\prime} A_{n}(\bar{\lambda})$ is non-negative definite, and the last inequality is from the spectral radius theorem. From Claims C.1.3 and C.2.2, $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{\infty}<\infty$ and $\sup _{\lambda \in \Lambda}\left\|G_{n}(\lambda)\right\|_{1}<\infty$, so $\sup _{\lambda \in \Lambda}\left\|A_{n}^{\prime}(\lambda) A_{n}(\lambda)\right\|_{\infty}<\infty$. As $\frac{1}{n} a^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} a=O_{p}(1)$ and $\frac{1}{n} b^{\prime} \varsigma_{n}^{* \prime} \varsigma_{n}^{*} b=O_{p}(1)$, we have

$$
\sup _{\left|\lambda_{1}-\lambda_{2}\right|<\delta^{*}} \frac{1}{n}\left|a^{\prime} \varsigma_{n}^{* \prime} G_{n}^{m_{1}}\left(\lambda_{1}\right)^{\prime} G_{n}^{m_{2}}\left(\lambda_{1}\right) \varsigma_{n}^{*} b-a^{\prime} \varsigma_{n}^{* \prime} G_{n}^{m_{1}}\left(\lambda_{2}\right)^{\prime} G_{n}^{m_{2}}\left(\lambda_{2}\right) \varsigma_{n}^{*} b\right|=O_{p}\left(\delta^{*}\right)
$$

Then the ULLN follows.
Proof of Proposition 2. Similarly to the proof of Proposition 1. denote $a_{j}^{\prime} \varsigma_{n}^{* \prime} M_{j n} \varsigma_{n}^{*} b_{j}=\sum_{i=1}^{n} q_{i, n}(j)$, then $r_{i, n}=\sum_{j=1}^{m} q_{i, n}(j)$. Each $q_{i, n}(j)$ is L_{2}-NED on the i.i.d. random field $\varsigma=(\varepsilon, \xi)$ with a finite NED scaling factor. It is straightforward to show $\left\|r_{i, n}\right\|_{2+\delta_{\varepsilon}}<\infty$. For the case in Assumption 4.1), Claims C.1.6 and C.1.7 give the same NED coefficient $\varphi(s)=s^{\left(2-c_{3}\right) d_{0}}$ for each $q_{i, n}(j)$. Therefore, by Claim B.3. the NED coefficient for $r_{i, n}$ is also $\varphi(s)=s^{\left(2-c_{3}\right) d_{0}}$. As $c_{3}>3, \sum_{r=1}^{\infty} r^{d_{0}-1} \varphi(r)=\sum_{r=1}^{\infty} r^{\left(3-c_{3}\right) d_{0}-1}<\infty$. For the case in Assumption 4.2), Claims C.2.5 C.2.6 and B.3 give the NED coefficient $\varphi(s)=s^{d_{0}+m-1}\left|\lambda c_{w}\right|^{s / \rho_{c}}$ if $s>\bar{m} \rho_{c}$, otherwise, $\varphi(s)=1$, where \bar{m} is the highest power of G_{n}^{m} in $M_{j n}$'s. Therefore, $\sum_{r=1}^{\infty} r^{d_{0}-1} \varphi(r)=$ $\sum_{r=1}^{\bar{m} \rho_{c}} r^{d_{0}-1}+\sum_{r=\bar{m} \rho_{c}+1}^{\infty} r^{d_{0}+m-1}\left|\lambda c_{w}\right|^{r / \rho_{c}}<\infty$. All the four conditions in Claim B. 5 are satisfied and hence, $R_{n} / \sigma_{R n} \xrightarrow{d} N(0,1)$.
Proof of Theorem 1. Under Assumptions 1. 5. by applying Proposition $1 . \widehat{\kappa}-\kappa_{0} \xrightarrow{p} a \lim _{n \rightarrow \infty} \frac{1}{n} E\left(Q_{n}^{\prime} \xi_{n}\right)+$ $b \lim _{n \rightarrow \infty} \frac{1}{n} E\left(X_{2 n}^{\prime} \varepsilon_{n} \delta_{0}\right)$, where

$$
a=\left(H_{q}^{\prime}\left[\lim _{n \rightarrow \infty} E\left(\frac{Q_{n}^{\prime} Q_{n}}{n}\right)\right]^{-1} H_{q}\right)^{-1} H_{q}^{\prime}\left[\lim _{n \rightarrow \infty} E\left(\frac{Q_{n}^{\prime} Q_{n}}{n}\right)\right]^{-1} \text { and } b=a \lim _{n \rightarrow \infty} E\left(\frac{Q_{n}^{\prime} X_{2 n}}{n}\right)\left(\lim _{n \rightarrow \infty} \frac{X_{2 n}^{\prime} X_{2 n}}{n}\right)^{-1}
$$

with $H_{q}=\lim _{n \rightarrow \infty} \frac{1}{n}\left[E\left(Q_{n}^{\prime} G_{n}\right) X_{1 n} \beta_{0}+E\left(Q_{n}^{\prime} G_{n} \varepsilon_{n}\right) \delta_{0}, E\left(Q_{n}^{\prime}\right) X_{1 n}, E\left(Q_{n}^{\prime} \varepsilon_{n}\right)\right]$. As $E\left(Q_{n}^{\prime} \xi_{n}\right)=0$ and $E\left(X_{2 n}^{\prime} \varepsilon_{n}\right)=$ 0 , we have $\widehat{\kappa}-\kappa_{0} \xrightarrow{p} 0$. Under given assumptions, since $\widehat{\kappa}-\kappa_{0}$ can be written as a form of R_{n} in Proposition 2. $\sqrt{n}\left(\widehat{\kappa}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{I V}\right)$. Similarly, we can show $\sqrt{n}\left(\widehat{\kappa}_{G}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{G I V}\right)$.

Proof of Theorem 2. Let $\widehat{\kappa}_{B G I V}$ be the best G2SIV estimator with the corresponding optimal IV matrix $Q_{n}^{*}=\left[G_{n} X_{1 n}, G_{n} Z_{n}, X_{n}, Z_{n}\right]$. As $\sqrt{n}\left(\widehat{\kappa}_{B G I V}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{B G I V}\right)$ from Theorem 1 , to show $\sqrt{n}\left(\widehat{\kappa}_{F B G I V}-\kappa_{0}\right) \xrightarrow{d} N\left(0, \Sigma_{B G I V}\right)$, it is sufficient to show $\sqrt{n}\left(\widehat{\kappa}_{F B G I V}-\widehat{\kappa}_{B G I V}\right)=o_{p}(1)$. Denote $\widehat{Q}_{n}^{*}=$ $\left[G_{n}(\widehat{\lambda}) X_{1 n}, G_{n}(\widehat{\lambda}) Z_{n}, X_{n}, Z_{n}\right], v_{0}=\frac{\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0} / \sigma_{\xi 0}^{2}}{\sigma_{\xi 0}^{2}+\delta_{0}^{\prime} \Sigma_{\varepsilon 0} \delta_{0}}$, and $\widehat{v}=\frac{\widehat{\delta}^{\prime} \widehat{\Sigma}_{\varepsilon} \widehat{\delta} / \widehat{\sigma}_{\xi}^{2}}{\widehat{\sigma}_{\xi}^{2}+\hat{\delta}^{\prime} \Sigma_{\varepsilon} \delta}$. Then

$$
\begin{aligned}
\widehat{\kappa}_{F B G I V}-\kappa_{0}= & {\left[\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}\left(\widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}\right)^{-1} \widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]^{-1} } \\
& \cdot\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)^{\prime} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}\left(\widehat{Q}_{n}^{* /} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}\right)^{-1} \widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right) .
\end{aligned}
$$

We will show $\frac{1}{n}\left(\widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}-Q_{n}^{* \prime} \Pi_{n}^{-1} Q_{n}^{*}\right)=o_{p}(1), \frac{1}{n}\left[\widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)-Q_{n}^{* \prime} \Pi_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]=$ $o_{p}(1)$, and $\frac{1}{\sqrt{n}} \widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)-\frac{1}{\sqrt{n}} Q_{n}^{* \prime} \Pi_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1)$. As

$$
\frac{1}{n}\left(\widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}-Q_{n}^{* \prime} \Pi_{n}^{-1} Q_{n}^{*}\right)=\frac{1}{n}\left(\frac{1}{\widehat{\sigma}_{\xi}^{2}} \widehat{Q}_{n}^{* \prime} \widehat{Q}_{n}^{*}-\frac{1}{\sigma_{\xi 0}^{2}} Q_{n}^{* \prime} Q_{n}^{*}\right)-\frac{1}{n}\left(\widehat{v} \widehat{Q}_{n}^{* \prime} P_{n} \widehat{Q}_{n}^{*}-v_{0} Q_{n}^{* \prime} P_{n} Q_{n}^{*}\right)
$$

we can show each part is $o_{p}(1)$. From the proof of Corollary $1, \sup _{\lambda}\left\|\frac{1}{n} \widehat{Q}_{n}^{* \prime} \widehat{Q}_{n}^{*}\right\|=O_{p}(1)$ and $\sup _{\lambda} \frac{1}{n} \| \widehat{Q}_{n}^{* \prime} \widehat{Q}_{n}^{*}-$ $Q_{n}^{* \prime} Q_{n}^{*} \|=o_{p}(1)$, so

$$
\frac{1}{n}\left(\frac{1}{\widehat{\sigma}_{\xi}^{2}} \widehat{Q}_{n}^{* \prime} \widehat{Q}_{n}^{*}-\frac{1}{\sigma_{\xi 0}^{2}} Q_{n}^{* \prime} Q_{n}^{*}\right)=\left(\frac{1}{\widehat{\sigma}_{\xi}^{2}}-\frac{1}{\sigma_{\xi 0}^{2}}\right) \frac{1}{n} \widehat{Q}_{n}^{* \prime} \widehat{Q}_{n}^{*}+\frac{1}{\sigma_{\xi 0}^{2}}\left(\frac{1}{n} \widehat{Q}_{n}^{* \prime} \widehat{Q}_{n}^{*}-\frac{1}{n} Q_{n}^{* \prime} Q_{n}^{*}\right)=o_{p}(1)
$$

With same arguments, $\frac{1}{n}\left(\widehat{v} \widehat{Q}_{n}^{* \prime} P_{n} \widehat{Q}_{n}^{*}-v_{0} Q_{n}^{* \prime} P_{n} Q_{n}^{*}\right)=o_{p}(1)$. Together, we have $\frac{1}{n}\left(\widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1} \widehat{Q}_{n}^{*}-Q_{n}^{* \prime} \Pi_{n}^{-1} Q_{n}^{*}\right)=$ $o_{p}(1)$. Similarly, we can show $\frac{1}{n}\left[\widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)-Q_{n}^{* \prime} \Pi_{n}^{-1}\left(W_{n} Y_{n}, X_{1 n}, P_{n}^{\perp} Z_{n}\right)\right]=o_{p}(1)$. It remains to show $\frac{1}{\sqrt{n}} \widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)-\frac{1}{\sqrt{n}} Q_{n}^{* \prime} \Pi_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1)$. From Propositions 1 and 2 , and Corollary 1 , $\sqrt{n}\left(\frac{1}{\widehat{\sigma}_{\xi}^{2}}-\frac{1}{\sigma_{\xi 0}^{2}}\right)=O_{p}(1), \frac{1}{n} \widehat{Q}_{n}^{* \prime}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1), \frac{1}{\sqrt{n}} Q_{n}^{* \prime}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=O_{p}(1)$, and $\frac{1}{\sqrt{n}}\left(\widehat{Q}_{n}^{*}-Q_{n}^{*}\right)^{\prime}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1)$ as initial estimates are \sqrt{n}-consistent, so

$$
\frac{1}{\sqrt{n} \widehat{\sigma}_{\xi}^{2}} \widehat{Q}_{n}^{* \prime}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)-\frac{1}{\sqrt{n} \sigma_{\xi 0}^{2}} Q_{n}^{* \prime}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1)
$$

Similarly, $\frac{1}{\sqrt{n}} v_{0} Q_{n}^{* \prime} P_{n}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)-\frac{1}{\sqrt{n}} \widehat{v} \widehat{Q}_{n}^{* \prime} P_{n}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1)$. As $\Pi_{n}^{-1}=\frac{1}{\sigma_{\xi 0}} I_{n}-v_{0} P_{n}$,

$$
\frac{1}{\sqrt{n}} \widehat{Q}_{n}^{* \prime} \widehat{\Pi}_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)-\frac{1}{\sqrt{n}} Q_{n}^{* \prime} \Pi_{n}^{-1}\left(\xi_{n}+P_{n} \varepsilon_{n} \delta_{0}\right)=o_{p}(1)
$$

These together complete the proof $\sqrt{n}\left(\widehat{\kappa}_{F B G I V}-\widehat{\kappa}_{B G I V}\right)=o_{p}(1)$.
Claim C.3.1 Under Assumptions 1. 4, and 6, θ_{0} is the unique maximizer of $\lim _{n \rightarrow \infty} \frac{1}{n} E \ln L_{n}(\theta)$.

Proof of Claim C.3.1. We want to show $\lim _{n \rightarrow \infty} \frac{1}{n}\left[E\left(\ln L_{n}(\theta)\right)-E\left(\ln L_{n}\left(\theta_{0}\right)\right)\right] \leq 0$ and the equality holds iff $\theta=\theta_{0}$. From Section A.1, we have

$$
\begin{align*}
& \frac{1}{n}\left[E\left(\ln L_{n}(\theta)\right)-E\left(\ln L_{n}\left(\theta_{0}\right)\right)\right]=-\frac{1}{2} \ln \frac{\sigma_{\xi}^{2}}{\sigma_{\xi 0}^{2}}-\frac{1}{2} \ln \frac{\left|\Sigma_{\varepsilon}\right|}{\left|\Sigma_{\varepsilon 0}\right|}+\frac{1}{n} E\left(\ln \frac{\left|S_{n}(\lambda)\right|}{\left|S_{n}\right|}\right)-\frac{1}{2} \operatorname{tr}\left(\Sigma_{\varepsilon 0}^{1 / 2} \Sigma_{\varepsilon}^{-1} \Sigma_{\varepsilon 0}^{1 / 2}-I_{p_{2}}\right) \\
& -\frac{1}{2 n} \sum_{i=1}^{n} x_{2, i n}^{\prime}\left(\Gamma_{0}-\Gamma\right) \Sigma_{\varepsilon}^{-1}\left(\Gamma_{0}-\Gamma\right)^{\prime} x_{2, i n}+\frac{1}{2}-\frac{\sigma_{\xi 0}^{2}}{2 n \sigma_{\xi}^{2}} E\left[\operatorname{tr}\left(S_{n}^{-1 \prime} S_{n}(\lambda)^{\prime} S_{n}(\lambda) S_{n}^{-1 \prime}\right)\right] \\
& -\frac{1}{2 \sigma_{\xi}^{2}}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right) H_{1 n}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right)^{\prime} \\
& =-\frac{1}{2}\left[\operatorname{tr}\left(\Sigma_{\varepsilon 0}^{1 / 2} \Sigma_{\varepsilon}^{-1} \Sigma_{\varepsilon 0}^{1 / 2}\right)-\ln \left|\Sigma_{\varepsilon 0}^{1 / 2} \Sigma_{\varepsilon}^{-1} \Sigma_{\varepsilon 0}^{1 / 2}\right|-p_{2}\right]-\frac{1}{2 n} \sum_{i=1}^{n} x_{2, i n}^{\prime}\left(\Gamma_{0}-\Gamma\right) \Sigma_{\varepsilon}^{-1}\left(\Gamma_{0}-\Gamma\right)^{\prime} x_{2, i n} \\
& -\frac{1}{2 \sigma_{\xi}^{2}}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right) H_{1 n}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right)^{\prime} \\
& -\frac{1}{2 n} E\left[\operatorname{tr}\left(\frac{\sigma_{\xi 0}^{2}}{\sigma_{\xi}^{2}} S_{n}^{-1 \prime} S_{n}(\lambda)^{\prime} S_{n}(\lambda) S_{n}^{-1}\right)-\ln \left|\frac{\sigma_{\xi 0}^{2}}{\sigma_{\xi}^{2}} S_{n}^{-1 \prime} S_{n}(\lambda)^{\prime} S_{n}(\lambda) S_{n}^{-1}\right|-n\right] . \tag{C.3}
\end{align*}
$$

First we show $\frac{1}{n}\left[E\left(\ln L_{n}(\theta)\right)-E\left(\ln L_{n}\left(\theta_{0}\right)\right)\right] \leq 0$. By the concavity of $\ln x$, for any $x>0$, the function $f(x)=x-\ln x-1 \geq 0$ and it is minimized only at $x=1$. Also for any positive definite real value matrix M, $f(M)=\operatorname{tr}(M)-\ln |M|-m=\sum_{i=1}^{m}\left(\varphi_{i}-\ln \varphi_{i}-1\right) \geq 0$ and is minimized only at $M=I_{m}$, where m is the dimension of M and $\varphi_{i}^{\prime} s(i=1, \ldots m)$ are eigenvalues of M. Therefore, $\frac{1}{n}\left[E\left(\ln L_{n}(\theta)\right)-E\left(\ln L_{n}\left(\theta_{0}\right)\right)\right] \leq 0$.

Now we show that $\lim _{n \rightarrow \infty} \frac{1}{n}\left[E\left(\ln L_{n}(\theta)\right)-E\left(\ln L_{n}\left(\theta_{0}\right)\right)\right]=0$ implies $\theta=\theta_{0}$. All the four terms in C.3 are zero. Since $f\left(\Sigma_{\varepsilon 0}^{1 / 2} \Sigma_{\varepsilon}^{-1} \Sigma_{\varepsilon 0}^{1 / 2}\right)=0$, it must be $\Sigma_{\varepsilon}=\Sigma_{\varepsilon 0}$. As $\lim _{n \rightarrow \infty} \frac{1}{n} X_{2 n}^{\prime} X_{2 n}$ is p.d., it must be $\Gamma_{0}=\Gamma$. The third and fourth terms imply $\lim _{n \rightarrow \infty}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\left(\Gamma-\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right) H_{1 n}=0$ and $\frac{\sigma_{\xi 0}^{2}}{\sigma_{\xi}^{2}} S_{n}^{-1 \prime} S_{n}(\lambda)^{\prime} S_{n}(\lambda) S_{n}^{-1}=I_{n}$ with probability one. With $\Gamma_{0}=\Gamma, \lim _{n \rightarrow \infty}\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},((\Gamma-\right.$ $\left.\left.\left.\Gamma_{0}\right) \delta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right) H_{1 n}=0$ is equivalent to $\left(\left(\lambda_{0}-\lambda\right),\left(\beta_{0}-\beta\right)^{\prime},\left(\delta_{0}-\delta\right)^{\prime}\right) H_{n}=0$, where $H_{n}=\frac{1}{n} E\left[\left(G_{n}\left(X_{1 n} \beta_{0}+\right.\right.\right.$ $\left.\left.\left.\varepsilon_{n} \delta_{0}\right), X_{1 n}, \varepsilon_{n}\right)^{\prime}\left(G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right), X_{1 n}, \varepsilon_{n}\right)\right]$.

Under Assumption 6(a) that H_{n} is p.d., we have $\lambda_{0}=\lambda, \beta_{0}=\beta$, and $\delta_{0}=\delta$. Under Assumption 6(b), as $S_{n}(\lambda)^{\prime} S_{n}(\lambda)$ is linearly independent of $S_{n}^{\prime} S_{n}$ with probability one, i.e., for any $\lambda \neq \lambda_{0}$, no value of σ_{ξ}^{2} can make the equality $\frac{\sigma_{\xi 0}^{2}}{\sigma_{\xi}^{2}} S_{n}^{-1 \prime} S_{n}(\lambda)^{\prime} S_{n}(\lambda) S_{n}^{-1}=I_{n}$ hold with probability one., then, it must be $\lambda=\lambda_{0}$ and $\sigma_{\xi}^{2}=\sigma_{\xi 0}^{2}$. Since $\lim _{n \rightarrow \infty} \frac{1}{n} X_{1 n}^{\prime} X_{1 n}$ is p.d., the third term being zero implies $\beta=\beta_{0}$ and $\delta=\delta_{0}$.

Claim C.3.2 Under Assumptions 1-3, and 6, the information matrix $I_{\theta_{0}}$ is positive definite.
Proof of Claim C.3.2. The $I_{\theta_{0}}=-\lim _{n \rightarrow \infty} E\left(\frac{1}{n} \frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)$. Since X_{n} is made of all distinct column vectors of $X_{1 n}$ and $X_{2 n}$, we can write $X_{1 n} \beta_{0}=X_{n} \beta_{0}^{+}$and $X_{2 n} \Gamma_{0}=X_{n} \Gamma_{0}^{+}$, where some elements in β^{+}and γ^{+}are zero. To show $I_{\theta_{0}}$ is p.d., it is sufficient to show that $I_{\theta_{0}}^{+}$is p.d., where $I_{\theta_{0}}^{+}$is the information matrix for $L_{n}\left(\theta^{+}\right)$and $\theta^{+}=\left(\lambda, \beta^{+\prime}, v e c\left(\Gamma^{+}\right)^{\prime}, \sigma_{\xi}^{2}, \alpha^{\prime}, \delta^{\prime}\right)^{\prime}$ without constraints on some elements of β_{0}^{+}and Γ_{0}^{+}being
zero. Let $C_{I}=\left(c_{I 1}, c_{I 2}^{\prime}, \operatorname{vec}\left(c_{I 3}\right)^{\prime}, c_{I 4}, c_{I 5}^{\prime}, c_{I 6}^{\prime}\right)^{\prime}$ be a $\left(k+k p_{2}+J+p_{2}+2\right)$ dimensional column vector of constants, where $c_{I 1}$ and $c_{I 4}$ are constants; $c_{I 2}, c_{I 5}$, and $c_{I 6}$ are column vectors of dimension k, J, and p_{2}; c_{3} is a $k \times p_{2}$ matrix. To prove $I_{\theta_{0}}^{+}$is p.d., it is sufficient to show that the $C_{I}=0$ is the only solution to $I_{\theta_{0}}^{+} C_{I}=0$. From the second row block of the linear equation system $I_{\theta_{0}}^{+} C_{I}=0$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left[-c_{I 1} X_{n}^{\prime} E\left(G_{n} X_{n} \beta_{0}^{+}+G_{n} \varepsilon_{n} \delta_{0}\right)-X_{n}^{\prime} X_{n} c_{I 2}+\left(\delta_{0}^{\prime} \otimes\left(X_{n}^{\prime} X_{n}\right)\right) v e c\left(c_{I 3}\right)\right]=0
$$

From the third row block, we have
$\lim _{n \rightarrow \infty} \frac{1}{n}\left[c_{I 1}\left(\delta_{0} \otimes X_{n}^{\prime}\right) E\left(G_{n} X_{n} \beta_{0}+G_{n} \varepsilon_{n} \delta_{0}\right)+\left(\delta_{0} \otimes\left(X_{n}^{\prime} X_{n}\right)\right) c_{I 2}-\left(\left(\sigma_{\xi 0}^{2} \Sigma_{\varepsilon 0}^{-1}+\delta_{0} \delta_{0}^{\prime}\right) \otimes\left(X_{n}^{\prime} X_{n}\right)\right) v e c\left(c_{I 3}\right)\right]=0$.
By cancelling out $\lim _{n \rightarrow \infty} \frac{1}{n} X_{n}^{\prime} X_{n} c_{I 2}$ in above two equations, we have $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\Sigma_{\varepsilon 0}^{-1} \otimes\left(X_{n}^{\prime} X_{n}\right)\right) v e c\left(c_{I 3}\right) \sigma_{\xi 0}^{2}=0$. As $\lim _{n \rightarrow \infty} \frac{X_{n}^{\prime} X_{n}}{n}$ is p.d., it follows that $c_{I 3}=0$. Now with $c_{I 3}=0, c_{I 2}=-c_{I 1}\left(\lim _{n \rightarrow \infty} \frac{X_{n}^{\prime} X_{n}}{n}\right)^{-1} \lim _{n \rightarrow \infty} \frac{1}{n}\left[X_{n}^{\prime} E\left(G_{n} X_{n} \beta_{0}^{+}+\right.\right.$ $\left.\left.G_{n} \varepsilon_{n} \delta_{0}\right)\right]$. From the fourth row block, we have $c_{I 4}=2 \sigma_{\xi 0}^{2} \lim _{n \rightarrow \infty} \frac{1}{n} E\left[-c_{I 1} \operatorname{tr}\left(G_{n}\right)\right]$. From the fifth row block, we have $c_{I 5}=0$. From the sixth row block, we have $c_{I 6}=-c_{I 1} \Sigma_{\varepsilon 0}^{-1} \lim _{n \rightarrow \infty} \frac{1}{n} E\left[\varepsilon_{n}^{\prime} G_{n}\left(X_{1 n} \beta_{0}^{+}+\varepsilon_{n} \delta_{0}\right)\right]$. From the first row block, we have

$$
\begin{aligned}
0= & \lim _{n \rightarrow \infty} \frac{1}{n}\left\{-c_{I 1}\left[\sigma_{\xi 0}^{2} \operatorname{tr}\left[E\left(G_{n}^{2}+G_{n} G_{n}^{\prime}\right)\right]+E\left[\left(X_{n} \beta_{0}^{+}+G_{n} \varepsilon_{n} \delta_{0}\right)^{\prime} G_{n}^{\prime} G_{n}\left(X_{n} \beta_{0}^{+}+G_{n} \varepsilon_{n} \delta_{0}\right)\right]\right]\right. \\
& -c_{I 2}^{\prime} X_{n}^{\prime} E\left(G_{n} X_{n} \beta_{0}^{+}+G_{n} \varepsilon_{n} \delta_{0}\right)+\operatorname{vec}\left(c_{I 3}\right)^{\prime}\left[\delta_{0} \otimes X_{n}^{\prime} E\left(G_{n} X_{n} \beta_{0}^{+}+G_{n} \varepsilon_{n} \delta_{0}\right)\right]-c_{I 4} E\left[\operatorname{tr}\left(G_{n}\right)\right] \\
& \left.-c_{I 6}^{\prime} E\left(\varepsilon_{n}^{\prime} G_{n}\left(X_{n} \beta_{0}^{+}+\varepsilon_{n} \delta_{0}\right)\right)\right\}
\end{aligned}
$$

Plugging in $c_{I 2}, \ldots, c_{I 6}$ from the above, we have

$$
\begin{aligned}
0= & -c_{I 1} \lim _{n \rightarrow \infty} \frac{1}{n}\left[\sigma_{\xi 0}^{2} \operatorname{tr}\left[E\left(G_{n}^{2}+G_{n} G_{n}^{\prime}\right)\right]-\lim _{n \rightarrow \infty} c_{I 1} \frac{1}{n} E\left(H_{n}^{\prime} H_{n}\right)+2 c_{I 1} \sigma_{\xi 0}^{2}\left(\lim _{n \rightarrow \infty} E \frac{\operatorname{tr}\left(G_{n}\right)}{n}\right)^{2}\right. \\
& +c_{I 1} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(H_{n}^{\prime}\right) X_{n}\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime} E\left(H_{n}\right)+c_{I 1}\left(\lim _{n \rightarrow \infty} E \frac{\varepsilon_{n}^{\prime} H_{n}}{n}\right)^{\prime} \Sigma_{\varepsilon 0}^{-1}\left(\lim _{n \rightarrow \infty} E \frac{\varepsilon_{n}^{\prime} H_{n}}{n}\right),
\end{aligned}
$$

where $H_{n}=G_{n}\left(X_{n} \beta_{0}^{+}+\varepsilon_{n} \delta_{0}\right)=G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)$. By Cauchy-Schwarz inequality, $E\left(H_{n}^{\prime} H_{n}\right)-E\left(H_{n}^{\prime}\right) E\left(H_{n}\right) \geq$ $\frac{1}{n} E\left(H_{n}^{\prime} \varepsilon_{n}\right) \Sigma_{\varepsilon 0}^{-1} E\left(\varepsilon_{n}^{\prime} H_{n}\right)$. Hence,

$$
\begin{aligned}
& E\left(H_{n}^{\prime} H_{n}\right)-\frac{1}{n} E\left(H_{n}^{\prime} \varepsilon_{n}\right) \Sigma_{\varepsilon 0}^{-1} E\left(\varepsilon_{n}^{\prime} H_{n}\right)-E\left(H_{n}^{\prime}\right) X_{n}\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime} E\left(H_{n}\right) \\
\geq & E\left(H_{n}^{\prime}\right) E\left(H_{n}\right)-E\left(H_{n}^{\prime}\right)\left[X_{n}\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime}\right] E\left(H_{n}\right)=E\left(H_{n}^{\prime}\right)\left[I_{n}-X_{n}\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime}\right] E\left(H_{n}\right) \geq 0
\end{aligned}
$$

As $E\left[\operatorname{tr}\left(G_{n}^{2}+G_{n} G_{n}^{\prime}\right)\right]-\frac{2}{n} E^{2}\left[\operatorname{tr}\left(G_{n}\right)\right] \geq E\left[\operatorname{tr}\left(G_{n}^{2}+G_{n} G_{n}^{\prime}-\frac{2}{n} \operatorname{tr}^{2}\left(G_{n}\right)\right]=\frac{1}{2} E\left[\operatorname{tr}\left(G_{n}+G_{n}^{\prime}-2 \operatorname{tr}\left(G_{n}\right) I_{n} / n\right)^{2}\right] \geq 0\right.$ by Assumption 6b) and $\lim _{n \rightarrow \infty} \frac{1}{n} E\left(H_{n}^{\prime}\right)\left[I_{n}-X_{n}\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime}\right] E\left(H_{n}\right)$ is p.d. by Assumption 6 a), it follows that $c_{I 1}=0$, and therefore $c_{I 2}, c_{I 4}$, and $c_{I 6}$ are all zeros.

Proof of Theorem 3. First we check two conditions for consistency of the QMLE in two steps.
Step 1: Uniform convergence of the \log quasi-likelihood function. All terms in the log quasi-likelihood function in Appendix A. 1 can be expressed in the general terms M_{n} in Proposition 1, the pointwise convergence is straightforward. Since all parameters are bounded and they enter the log quasi-likelihood function polynomially except for the term $\ln \left|S_{n}(\lambda)\right|$, we only need to show the stochastic equicontinuity of $\frac{1}{n} \ln \left|S_{n}(\lambda)\right|$ to have the uniform convergence. Applying the mean value theorem,

$$
\begin{equation*}
\left|\frac{1}{n}\left(\ln \left|S_{n}\left(\lambda_{1}\right)\right|-\ln \left|S_{n}\left(\lambda_{2}\right)\right|\right)\right|=\left|\left(\lambda_{2}-\lambda_{1}\right) \frac{1}{n} \operatorname{tr}\left(G_{n}(\bar{\lambda})\right)\right| \leq\left|\lambda_{2}-\lambda_{1}\right| C \tag{C.4}
\end{equation*}
$$

where $\bar{\lambda}$ is between λ_{1} and λ_{2} and C is a constant not depending on n. The inequality is implied by $\sup _{\lambda}\left\|G_{n}(\lambda)\right\|_{\infty}<\infty$. From this, we have $\sup _{\theta \in \Theta}\left|\frac{1}{n} \ln L_{n}(\theta)-E\left[\frac{1}{n} \ln L_{n}(\theta)\right]\right| \xrightarrow{p} 0$.

Step 2: Uniform equicontinuity of $\lim _{n \rightarrow \infty} E\left(\frac{1}{n} \ln L_{n}(\theta)\right)$. By inequality in C.4, variance parameters being bounded away from zero in compact parameter spaces, and earlier result $\frac{1}{n} E\left|\varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*}\right|=O(1)$, we have that $E\left(\frac{1}{n} \ln L_{n}(\theta)\right)$ is uniformly equicontinuous in $\theta \in \Theta$.

As θ_{0} is the unique maximizer of $\lim _{n \rightarrow \infty} E\left[\frac{1}{n} \ln L_{n}(\theta)\right]$ from Claim C.3.1. these together imply $\widehat{\theta} \xrightarrow{p} \theta_{0}$.
Next we show the asymptotic normality of $\widehat{\theta}$. The second derivatives in Appendix A. 3 can be written in the general form in Corollary 1 , so we have the uniform convergence that $\sup _{\theta \in \Theta} \frac{1}{n}\left\|\frac{\partial^{2} \ln L_{n}(\theta)}{\partial \theta \partial \theta^{\prime}}-E\left(\frac{\partial^{2} \ln \left(L_{n}(\theta)\right)}{\partial \theta \partial \theta^{\prime}}\right)\right\| \xrightarrow{p}$ 0. Applying the CLT in Proposition 2 to $\frac{1}{\sqrt{n}} \frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta}$ in Appendix A.2, we have

$$
\begin{aligned}
& \sqrt{n}\left(\widehat{\theta}-\theta_{0}\right)=-\left(\frac{1}{n} \frac{\partial^{2} \ln L_{n}(\widetilde{\theta})}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{1}{\sqrt{n}} \frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta}=-\left[E\left(\frac{1}{n} \frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)\right]^{-1} \frac{1}{\sqrt{n}} \frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta}+o_{p}(1) \\
& \xrightarrow{d} N\left(0,\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(\frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta} \frac{\partial \ln L_{n}\left(\theta_{0}\right)}{\partial \theta^{\prime}}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\frac{\partial^{2} \ln L_{n}\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1}\right)
\end{aligned}
$$

Proof of Theorem 4. As $\xi_{n}\left(\theta^{G}\right)=\left(\lambda_{0}-\lambda\right) G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)+X_{1 n}\left(\beta_{0}-\beta\right)-X_{2 n}\left(\Gamma_{0}-\Gamma\right) \delta+\varepsilon_{n}\left(\delta_{0}-\right.$ $\delta)+\left[I_{n}-\left(\lambda-\lambda_{0}\right) G_{n}\right] \xi_{n}$, we have $\xi_{n}\left(\theta^{G}\right)=M_{n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{G}-\theta^{G}\right)+X_{2 n}\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right)+\xi_{n}$, where ς_{n}^{*} and M_{n} are expressed as in Propositions 1 and 2. Therefore

$$
\frac{1}{n} \xi_{n}^{\prime}\left(\theta^{G}\right) Q_{n} \xrightarrow{p}\left(\theta_{0}^{G}-\theta^{G}\right)^{\prime} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(b_{1}^{\prime} \varsigma_{n}^{* \prime} M_{n}^{\prime} Q_{n}\right)+\left[\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right)\right]^{\prime} \lim _{n \rightarrow \infty} \frac{1}{n} X_{2 n}^{\prime} Q_{n}
$$

For $P_{j n}=M_{j n}-\frac{1}{n} \operatorname{tr}\left(M_{j n}\right) I_{n}$,

$$
\begin{aligned}
\xi_{n}^{\prime}\left(\theta^{G}\right) P_{j n} \xi_{n}\left(\theta^{G}\right)= & \left(\theta_{0}^{G}-\theta^{G}\right)^{\prime} b_{1}^{\prime} \varsigma_{n}^{* \prime} M_{n}^{\prime} P_{j n} M_{n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{G}-\theta^{G}\right)+2\left(\theta_{0}^{G}-\theta^{G}\right)^{\prime} b_{1}^{\prime} \varsigma_{n}^{* \prime} M_{n}^{\prime} P_{j n} \xi_{n}+\xi_{n}^{\prime} P_{j n} \xi_{n} \\
& +\left[\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right)\right]^{\prime} X_{2 n}^{\prime} P_{j n}\left[X_{2 n}\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right)+M_{n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{G}-\theta^{G}\right)+\xi_{n}\right]
\end{aligned}
$$

Proposition 1 implies that $\frac{1}{n} \xi_{n}^{\prime} P_{j n} \xi_{n} \xrightarrow{p} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(\xi_{n}^{\prime} M_{j n} \xi_{n}\right)-\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left[E\left(M_{j n}\right)\right] \lim _{n \rightarrow \infty} \frac{1}{n} E\left(\xi_{n}^{\prime} \xi_{n}\right)=0$ and $\frac{1}{n} \varsigma_{n}^{* \prime} M_{n}^{\prime} P_{j n} M_{n} \varsigma_{n}^{*} \xrightarrow{p} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(\varsigma_{n}^{* \prime} M_{n}^{\prime} M_{j n} M_{n} \varsigma_{n}^{*}\right)-\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left[E\left(M_{j n}\right)\right] \lim _{n \rightarrow \infty} \frac{1}{n} E\left(\varsigma_{n}^{* \prime} M_{n}^{\prime} M_{n} \varsigma_{n}^{*}\right)$. Therefore,

$$
\begin{aligned}
& \frac{1}{n} \xi_{n}^{\prime}\left(\theta^{G}\right) P_{j n} \xi_{n}\left(\theta^{G}\right) \xrightarrow{p} 2\left(\theta_{0}^{G}-\theta^{G}\right)^{\prime} b_{1}^{\prime}\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\varsigma_{n}^{* \prime} M_{n}^{* \prime} M_{j n} \xi_{n}\right)-\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\varsigma_{n}^{* \prime} M_{n}^{* \prime} \xi_{n}\right) \lim _{n \rightarrow \infty} \frac{1}{n} E\left(M_{j n}\right)\right) \\
& +\left(\theta_{0}^{G}-\theta^{G}\right)^{\prime} b_{1}^{\prime}\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\varsigma_{n}^{* \prime} M_{n}^{* \prime} M_{j n} M_{n}^{*} \varsigma_{n}^{*}\right)-\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\varsigma_{n}^{* \prime} M_{n}^{* \prime} M_{n}^{*} \varsigma_{n}^{*}\right) \lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr} E\left(M_{j n}\right)\right) b_{1}\left(\theta_{0}^{G}-\theta^{G}\right) \\
& +\left[\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right)\right]^{\prime}\left(\lim _{n \rightarrow \infty} \frac{1}{n} X_{2 n}^{\prime} E\left(P_{j n}\right) X_{2 n}\right)\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right) \\
& +\left[\left(\Gamma_{0}-\Gamma\right)\left(\delta_{0}-\delta\right)\right]^{\prime}\left[\lim _{n \rightarrow \infty} \frac{1}{n} E\left(X_{2 n}^{\prime} M_{j n} M_{n} \varsigma_{n}^{*}\right)-\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr} E\left(M_{j n}\right) \lim _{n \rightarrow \infty} \frac{1}{n} E\left(X_{2 n}^{\prime} M_{n} \varsigma_{n}^{*}\right)\right] b_{1}\left(\theta_{0}^{G}-\theta^{G}\right) .
\end{aligned}
$$

From these moments, we see $\frac{1}{n} g_{n}\left(\theta^{G}\right) \xrightarrow{p} g\left(\theta^{G}\right)$ with $g\left(\theta_{0}^{G}\right)=0$. As all parameters in θ^{G} enter $g_{n}\left(\theta^{G}\right)$ polynomially, pointwise convergence gives the uniform convergence that $\sup _{\theta^{G}} \frac{1}{n}\left\|a_{n} g_{n}\left(\theta^{G}\right)-a_{n} g\left(\theta^{G}\right)\right\| \xrightarrow{p} 0$. With the identification conditions from Assumption 7 , the consistency of GMM $\widehat{\theta}_{n}^{G}$ follows.

For the asymptotic distribution of $\widehat{\theta}_{n}^{G}$, by Taylor's expansion of $\frac{\partial g_{n}^{\prime}\left(\widehat{\theta}_{n}^{G}\right)}{\partial \theta^{G}} a_{n}^{\prime} a_{n} g_{n}\left(\widehat{\theta}_{n}^{G}\right)=0$ at θ_{0}^{G},

$$
\sqrt{n}\left(\widehat{\theta}_{n}^{G}-\theta_{0}^{G}\right)=-\left(\frac{1}{n} \frac{\partial g_{n}^{\prime}\left(\widehat{\theta}_{n}^{G}\right)}{\partial \theta^{G}} a_{n}^{\prime} a_{n} \frac{1}{n} \frac{\partial g_{n}^{\prime}\left(\bar{\theta}_{n}^{G}\right)}{\partial \theta^{G}}\right)^{-1} \frac{1}{n} \frac{\partial g_{n}^{\prime}\left(\widehat{\theta}_{n}^{G}\right)}{\partial \theta^{G}} a_{n}^{\prime} \frac{1}{\sqrt{n}} a_{n} g_{n}\left(\theta_{0}^{G}\right),
$$

where $\bar{\theta}_{n}^{G}$ is between $\widehat{\theta}_{n}^{G}$ and θ_{0}^{G}. Denote $A^{s}=A+A^{\prime}$ as the sum of A and its transpose, then

$$
\frac{1}{n} \frac{\partial g_{n}\left(\theta^{G}\right)}{\partial \theta^{G \prime}}=\frac{1}{n}\left(\begin{array}{cccc}
-\xi_{n}^{\prime}\left(\theta^{G}\right) P_{1 n}^{s} W_{n} Y_{n} & -\xi_{n}^{\prime}\left(\theta^{G}\right) P_{1 n}^{s} X_{1 n} & -\delta^{\prime} \otimes\left[\xi_{n}^{\prime}\left(\theta^{G}\right) P_{1 n}^{s} X_{2 n}\right] & \xi_{n}^{\prime}\left(\theta^{G}\right) P_{1 n}^{s}\left(Z_{n}-X_{2 n} \Gamma\right) \\
\vdots & \vdots & \vdots & \vdots \\
-\xi_{n}^{\prime}\left(\theta^{G}\right) P_{m n}^{s} W_{n} Y_{n} & -\xi_{n}^{\prime}\left(\theta^{G}\right) P_{m n}^{s} X_{1 n} & -\delta^{\prime} \otimes\left[\xi_{n}^{\prime}\left(\theta^{G}\right) P_{m n}^{s} X_{2 n}\right] & \xi_{n}^{\prime}\left(\theta^{G}\right) P_{m n}^{s}\left(Z_{n}-X_{2 n} \Gamma\right) \\
-Q_{n}^{\prime} W_{n} Y_{n} & -Q_{n}^{\prime} X_{1 n} & \delta^{\prime} \otimes\left(Q_{n}^{\prime} X_{2 n}\right) & -Q_{n}^{\prime}\left(Z_{n}-X_{2 n} \Gamma\right) \\
0 & 0 & -I_{p_{2}} \otimes\left(X_{n}^{\prime} X_{2 n}\right) & 0
\end{array}\right)
$$

It is easy to check $\sup _{\theta^{G}} \frac{1}{n}\left\|\frac{\partial g_{n}\left(\theta^{G}\right)}{\partial \theta^{G}}-\left(\frac{\partial g\left(\theta^{G}\right)}{\partial \theta^{G}}\right)\right\| \xrightarrow{p} 0$. Thus $\sqrt{n}\left(\widehat{\theta}_{n}^{G}-\theta_{0}^{G}\right)=-\left(D_{n}^{\prime} a_{n}^{\prime} a_{n} D_{n}\right)^{-1} D_{n}^{\prime} a_{n}^{\prime} \frac{1}{\sqrt{n}} a_{n} g_{n}\left(\theta_{0}^{G}\right)+$ $o_{p}(1)$. As $\frac{1}{\sqrt{n}} g_{n}\left(\theta_{0}^{G}\right)$ involves $\frac{1}{\sqrt{n}} X_{n}^{\prime} \varepsilon_{n}, \frac{1}{\sqrt{n}} Q_{n}^{\prime} \xi_{n}$, and

$$
\frac{1}{\sqrt{n}} \xi_{n}^{\prime} M_{j n} \xi_{n}-\frac{1}{\sqrt{n}} \xi_{n}^{\prime} \xi_{n} \frac{\operatorname{tr}\left(M_{j n}\right)}{n}=\frac{1}{\sqrt{n}} \xi_{n}^{\prime} M_{j n} \xi_{n}-\frac{1}{\sqrt{n}} \xi_{n}^{\prime} \xi_{n} \frac{E\left[\operatorname{tr}\left(M_{j n}\right)\right]}{n}+o_{p}(1)
$$

the asymptotic distribution of $\sqrt{n}\left(\widehat{\theta}_{n}^{G}-\theta_{0}^{G}\right)$ is of the form of R_{n} in Proposition 2. Under Assumptions 1.4. and $\sqrt{n}\left(\widehat{\theta}_{n}^{G}-\theta_{0}^{G}\right) \xrightarrow{d} N\left(0, \Sigma_{G M M}\right)$.

Now we give the expressions of D_{n} and $\Omega\left(\theta_{0}^{G}\right)$.

$$
\begin{align*}
D_{n} & =-\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \frac{\partial\left(g_{n}\left(\theta_{0}^{G}\right)\right)}{\partial \theta^{G \prime}} \\
& =\lim _{n \rightarrow \infty}\left(\begin{array}{cccc}
g_{1 \lambda} & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
g_{m \lambda} & 0 & 0 & 0 \\
\frac{1}{n} E\left[Q_{n}^{\prime} G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)\right] & E\left(\frac{Q_{n}^{\prime} X_{1 n}}{n}\right) & -\delta^{\prime} \otimes E\left(\frac{Q_{n}^{\prime} X_{2 n}}{n}\right) & E\left(\frac{Q_{n}^{\prime} \varepsilon_{n}}{n}\right) \\
0 & 0 & I_{p_{2}} \otimes\left(\frac{X_{n}^{\prime} X_{2 n}}{n}\right) & 0
\end{array}\right), \tag{C.5}
\end{align*}
$$

where $g_{j \lambda}=\sigma_{\xi 0}^{2}\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{tr}\left(M_{j n}^{s} G_{n}\right)\right]-\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{tr}\left(M_{j n}^{s}\right)\right] \lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{tr}\left(G_{n}\right)\right]\right)$ for $j=1, \ldots, m$, because

$$
\begin{aligned}
\frac{1}{n} \xi_{n}^{\prime} P_{j n}^{s} W_{n} Y_{n} & \left.=\frac{1}{n} \xi_{n}^{\prime} P_{j n}^{s} G_{n} \xi_{n}+\frac{1}{n} \xi_{n}^{\prime} P_{j n}^{s} G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)\right] \\
& \xrightarrow{p} \lim _{n \rightarrow \infty} \frac{1}{n} \xi_{n}^{\prime} P_{j n}^{s} G_{n} \xi_{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \xi_{n}^{\prime} M_{j n}^{s} G_{n} \xi_{n}-\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(M_{j n}^{s}\right) \frac{1}{n} \xi_{n}^{\prime} G_{n} \xi_{n} \\
& =\sigma_{\xi 0}^{2}\left(\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{tr}\left(M_{j n}^{s} G_{n}\right)\right]-\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{tr}\left(M_{j n}^{s}\right)\right] \lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{tr}\left(G_{n}\right)\right]\right)
\end{aligned}
$$

For the variance,

$$
\Omega\left(\theta_{0}^{G}\right)=\operatorname{Var}\left(g_{n}\left(\theta_{0}^{G}\right)\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\begin{array}{ccccc}
\Omega_{11} & \cdots & \Omega_{1 m} & \sum_{i=1}^{n} E\left[\left(\xi_{i, n}^{3} P_{1 n}(i, i) Q_{i, n}\right]\right. & 0 \tag{C.6}\\
\Omega_{21} & \cdots & \Omega_{2 m} & \sum_{i=1}^{n} E\left[\left(\xi_{i, n}^{3} P_{2 n}(i, i) Q_{i, n}\right]\right. & 0 \\
\vdots & & \vdots & \vdots & \vdots \\
\Omega_{m 1} & \cdots & \Omega_{m m} & \sum_{i=1}^{n} E\left[\left(\xi_{i, n}^{3} P_{m n}(i, i) Q_{i, n}\right]\right. & 0 \\
0 & \cdots & 0 & \sigma_{\xi 0}^{2} Q_{n}^{\prime} Q_{n} & 0 \\
0 & \cdots & 0 & 0 & \Sigma_{\varepsilon 0} \otimes\left(X_{n}^{\prime} X_{n}\right)
\end{array}\right)
$$

where $\Omega_{j k}=\operatorname{Var}\left(\xi_{n}^{\prime} P_{j n} \xi_{n} \xi_{n}^{\prime} P_{k n} \xi_{n}\right)=\sum_{i=1}^{n} E\left[\left(\xi_{i, n}^{4}-3 \sigma_{\xi 0}^{4}\right) P_{j n}(i, i) P_{k n}(i, i)\right]+\sigma_{\xi 0}^{4} t r\left(P_{j n} P_{k n}^{s}\right)$ for $j, k=$ $1, \ldots, m$.
Proof of Claim 1, As $\widehat{\xi}_{n}=S_{n}(\widehat{\lambda}) Y_{n}-X_{1 n} \widehat{\beta}-\left(Z_{n}-X_{2 n} \widehat{\Gamma}\right) \widehat{\delta}=\widehat{\xi}_{n}^{*}+X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right)\left(\delta_{0}-\widehat{\delta}\right)$, where

$$
\begin{aligned}
\widehat{\xi}_{n}^{*} & =S_{n}(\widehat{\lambda}) Y_{n}-X_{1 n} \widehat{\beta}-\left(Z_{n}-X_{2 n} \widehat{\Gamma}\right) \delta_{0}+\varepsilon_{n}\left(\delta_{0}-\widehat{\delta}\right) \\
& =\left(\lambda_{0}-\widehat{\lambda}\right) G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}\right)+X_{1 n}\left(\beta_{0}-\widehat{\beta}\right)-X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right) \delta_{0}+\varepsilon_{n}\left(\delta_{0}-\widehat{\delta}\right)-\left(\widehat{\lambda}-\lambda_{0}\right) G_{n} \xi_{n}+\xi_{n},
\end{aligned}
$$

we can express $\frac{1}{n} \widehat{\xi}_{n}^{*} \widehat{\xi}_{n}^{*}$ in the following form as in Proposition 1 so that:

$$
\frac{1}{n} \widehat{\xi}_{n}^{* \prime} \widehat{\xi}_{n}^{*}=\left(\theta_{0}-\widehat{\theta}\right)^{\prime} \frac{1}{n} a_{1} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}-\widehat{\theta}\right)+\frac{1}{n} a_{2} \varsigma_{n}^{* \prime} M_{n} \varsigma_{n}^{*} b_{2}\left(\theta_{0}-\widehat{\theta}\right)+\frac{1}{n} \xi_{n}^{\prime} \xi_{n} \xrightarrow{p} \sigma_{\xi 0}^{2}
$$

Similarly, $\frac{1}{n} \widehat{\xi}_{n}^{*} X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right)\left(\delta_{0}-\widehat{\delta}\right)=o_{p}(1)$ and $\frac{1}{n}\left(\delta_{0}-\widehat{\delta}\right)^{\prime}\left(\Gamma_{0}-\widehat{\Gamma}\right)^{\prime} X_{2 n}^{\prime} X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right)\left(\delta_{0}-\widehat{\delta}\right)=o_{p}(1)$. Thus, $\frac{1}{n} \widehat{\xi}_{n}^{\prime} \widehat{\xi}_{n} \xrightarrow{p} \sigma_{\xi 0}^{2}$.

Terms in $\Sigma_{I V}$ and $\Sigma_{B G I V}$ have some common features, but the most complicated term we need to show is

$$
\frac{1}{n}\left[a^{\prime} \widehat{\varepsilon}_{n}^{\prime} G_{n}(\widehat{\lambda})^{\prime} G_{n}(\widehat{\lambda}) \widehat{\varepsilon}_{n} b-E\left(a^{\prime} \varepsilon_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n} b\right)\right]=o_{p}(1)
$$

As $\widehat{\varepsilon}_{n}=\varepsilon_{n}+X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right)$, we have $\frac{1}{n}\left[a^{\prime} \widehat{\varepsilon}_{n}^{\prime} G_{n}(\widehat{\lambda})^{\prime} G_{n}(\widehat{\lambda}) \widehat{\varepsilon}_{n} b-E\left(a^{\prime} \widehat{\varepsilon}_{n}^{\prime} G_{n}(\widehat{\lambda})^{\prime} G_{n}(\widehat{\lambda}) \widehat{\varepsilon}_{n} b\right)\right]=o_{p}(1)^{12}$ from the ULLN in Corollary 1 and $\frac{1}{n}\left[E\left(a^{\prime} \widehat{\varepsilon}_{n}^{\prime} G_{n}(\widehat{\lambda})^{\prime} G_{n}(\widehat{\lambda}) \widehat{\varepsilon}_{n} b\right)-E\left(a^{\prime} \varepsilon_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n} b\right)\right]=o_{p}(1)$ from the equicontinuity of $\frac{1}{n} E\left[a^{\prime} \varepsilon_{n}^{\prime}(\theta) G_{n}(\lambda)^{\prime} G_{n}(\lambda) \varepsilon_{n}^{\prime}(\theta) b\right]$. These together complete the proof of $\frac{1}{n}\left[\widehat{\varepsilon}_{n}^{\prime} G_{n}(\widehat{\lambda})^{\prime} G_{n}(\widehat{\lambda}) \widehat{\varepsilon}_{n}-\right.$ $\left.E\left(\varepsilon_{n}^{\prime} G_{n}^{\prime} G_{n} \varepsilon_{n}\right)\right]=o_{p}(1)$.
Proof of Claim 2. Consider the moments in $\Sigma_{Q M L}$ and $\Sigma_{G M M}$. The most complicated term we need to show is

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{\xi}_{i, n}^{3} G_{i i, n}(\widehat{\lambda}) G_{i, n}(\widehat{\lambda}) \widehat{\varepsilon}_{n} b-\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n} G_{i, n} \varepsilon_{n} b\right]=o_{p}(1)
$$

As we can express $\widehat{\varepsilon}_{n}=\varepsilon_{n}+X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right)$ and

$$
\begin{aligned}
\widehat{\xi}_{n} & =\left(\lambda_{0}-\widehat{\lambda}\right) G_{n}\left(X_{1 n} \beta_{0}+\varepsilon_{n} \delta_{0}+\xi_{n}\right)+X_{1 n}\left(\beta_{0}-\widehat{\beta}\right)-X_{2 n}\left(\Gamma_{0}-\widehat{\Gamma}\right) \widehat{\delta}+\varepsilon_{n}\left(\delta_{0}-\widehat{\delta}\right)+\xi_{n} \\
& =M_{1 n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{*}-\widehat{\theta}^{*}\right)+\xi_{n}
\end{aligned}
$$

with $\theta^{*}=\left(\theta^{\prime}, \delta^{\prime} \Gamma^{\prime}\right)^{\prime}$, it is sufficient to show

$$
\begin{align*}
\frac{1}{n} \sum_{i=1}^{n}\left[e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{*}-\widehat{\theta}^{*}\right)\right]^{3} G_{i i, n}(\widehat{\lambda}) G_{i, n}(\widehat{\lambda}) \varsigma_{n}^{*} b_{2} & =o_{p}(1) \tag{C.7}\\
\frac{1}{n} \sum_{i=1}^{n}\left[e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{*}-\widehat{\theta}^{*}\right)\right]^{2} \xi_{i, n} G_{i i, n}(\widehat{\lambda}) G_{i, n}(\widehat{\lambda}) \varsigma_{n}^{*} b_{2} & =o_{p}(1) \tag{C.8}\\
\frac{1}{n} \sum_{i=1}^{n} e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} b_{1}\left(\theta_{0}^{*}-\widehat{\theta}^{*}\right) \xi_{i, n}^{2} G_{i i, n}(\widehat{\lambda}) G_{i, n}(\widehat{\lambda}) \varsigma_{n}^{*} b_{2} & =o_{p}(1) \tag{C.9}\\
\frac{1}{n} \sum_{i=1}^{n} \xi_{i, n}^{3} G_{i i, n}(\widehat{\lambda}) G_{i, n}(\widehat{\lambda}) \varepsilon_{n} b-\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n} G_{i, n} \varepsilon_{n} b\right] & =o_{p}(1) \tag{C.10}
\end{align*}
$$

Equations (C.7), C.8, and C.9) have some common features, so we will show (C.7) as an example. As $\sup _{i, n} \sup _{\lambda \in \Lambda}\left|G_{i i, n}(\lambda)\right|=O(1)$ and $\theta_{0}^{*}-\widehat{\theta}^{*}=o_{p}(1)$, we only need to show

$$
\sup _{\lambda \in \Lambda} \frac{1}{n}\left|\sum_{i=1}^{n}\left(e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} a_{1}\right)^{3} G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right|=O_{p}(1)
$$

[^10]It is sufficient to show

$$
\begin{gathered}
\left.E\left|\sup _{\lambda \in \Lambda} \frac{1}{n} \sum_{i=1}^{n}\left(e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} a_{1}\right)^{3} G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right| \leq\left.\sup _{i, n} E| | e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} a_{1}\right|^{3} \sup _{\lambda \in \Lambda}\left|G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right| \right\rvert\, \\
\leq\left(\sup _{i, n}\left\|e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} a_{1}\right\|_{4}\right)^{3} \sup _{i, n}\left\|\sup _{\lambda \in \Lambda}\left|G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right|\right\|_{4}=O(1) .
\end{gathered}
$$

The second inequality is from the Hölder's inequality. For the equality, $\sup _{i, n}\left\|e_{i, n}^{\prime} M_{1 n} \varsigma_{n}^{*} a_{1}\right\|_{4}=O(1)$ is directly from Claims C.1.6, C.1.7, C.2.5, and C.2.6, so we need to show $\sup _{i, n}\left\|\sup _{\lambda \in \Lambda} \mid G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right\| \|_{4}=$ $O(1)$. As $\left|G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right|=\left|\sum_{l=0}^{\infty} \lambda^{l} W_{i, n}^{l+1} \varsigma_{n}^{*} b_{2}\right| \leq \sum_{l=0}^{\infty}|\lambda|^{l}\left|W_{i, n}^{l+1} \varsigma_{n}^{*} b_{2}\right|$,

$$
\left\|\sup _{\lambda \in \Lambda}\left|G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right|\right\|_{4} \leq\left\|\sup _{\lambda \in \Lambda} \sum_{l=0}^{\infty}|\lambda|^{l}\left|W_{i, n}^{l+1} \varsigma_{n}^{*} b_{2}\right|\right\|_{4} \leq \sup _{\lambda \in \Lambda} \sum_{l=0}^{\infty}|\lambda|^{l}| | t_{i, n}(l+1) \|_{4} .
$$

As $\left\|t_{i, n}(m)\right\|_{p} \leq m^{c_{3} d_{0}+2} c_{w}^{m} C_{a p}$ under Assumption 4.1) and $\left\|t_{i, n}(m)\right\|_{p} \leq C_{a p} c_{w}^{m} m^{d_{0}}$ under Assumption 4.2) from Claims C.1.6 and C.2.5, together with $\sup _{\lambda \in \Lambda}|\lambda| c_{w}<1$ from Assumption 3.2), we have $\left\|\sup _{\lambda \in \Lambda} \mid G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right\| \|_{4}<C$, where C does not depend on i or n. Therefore, $\sup _{i, n}\left\|\sup _{\lambda \in \Lambda} \mid G_{i, n}(\lambda) \varsigma_{n}^{*} b_{2}\right\| \|_{4}=$ $O(1)$.

To show equation C.10, using similar arguments as those in Corollary 1, Claim C.1.6 and Claim C.2.5. we have the uniform convergence that

$$
\sup _{\lambda \in \Lambda} \frac{1}{n}\left|\sum_{i=1}^{n} \xi_{i, n}^{3} G_{i i, n}(\lambda) G_{i, n}(\lambda) \varepsilon_{n} b-\sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n}(\lambda) G_{i, n}(\lambda) \varepsilon_{n} b\right]\right|=o_{p}(1)
$$

and by the equicontinuity of $\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n}(\lambda) G_{i, n}(\lambda) \varepsilon_{n} b\right]$,

$$
\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n}(\widehat{\lambda}) G_{i, n}(\widehat{\lambda}) \varepsilon_{n} b\right]-\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n} G_{i, n} \varepsilon_{n} b\right]=o_{p}(1)
$$

Thus equation C.10 is proved.
These together complete the proof

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{\xi}_{i, n}^{3} G_{i i, n}(\widehat{\lambda}) G_{n}(\widehat{\lambda}) \widehat{\varepsilon}_{n} b-\frac{1}{n} \sum_{i=1}^{n} E\left[\xi_{i, n}^{3} G_{i i, n} G_{n} \varepsilon_{n} b\right]=o_{p}(1)
$$

Similarly, we can show $\frac{1}{n} \sum_{i=1}^{n} \widehat{\xi}_{i, n}^{4} G_{i i, n}(\widehat{\lambda})-\frac{1}{n} \sum_{i=1}^{n} E\left(\xi_{i, n}^{4} G_{i i, n}\right)=o_{p}(1)$. Therefore, if we replace θ_{0} with a consistent estimator $\widehat{\theta}, \varepsilon_{n}$ with $\widehat{\varepsilon}_{n}=Z_{n}-X_{2 n} \widehat{\Gamma}$, and $\xi_{i n}$ with $\widehat{\xi}_{i n}$, then we have consistent estimators of $\Sigma_{Q M L}$ and $\Sigma_{G M M}$.

[^0]: *We would like to thank the editor, Peter Robinson, the associate editor, and two anonymous referees for insightful and instructive comments. An earlier version of the paper was presented in seminars at the Ohio State U., City U. of HK, Nanyang Technological U., Tsinghua U., UEST of China, and Shanghai Jiaotong U. We appreciate comments from participants of those seminars, especially Robert de Jong and Xingbai Xu at the OSU. The usual disclaimer applies.
 ${ }^{\dagger}$ Corresponding author: xiqu@sjtu.edu.cn, Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai, China, 200052.

[^1]: ${ }^{1}$ In our earlier version, we explore finite neighbor's dependence which would be similar to m-dependence in time series analysis. But the NED is more general as we have found in this version.
 ${ }^{2}$ Infill asymptotics have not been developed for a NED process in the literature.

[^2]: ${ }^{3}$ Here we simplify the notation by regarding the subscripts i and j as integer values to indicate entries in a vector or matrix even though i and j refer formally in Assumption 1 to locations in the lattice D contained in the d_{0}-dimensional Euclidean space R^{d}.
 ${ }^{4}$ In the example that W_{n} is constructed by $w_{i j, n}=1 /\left|z_{i, n}-z_{j, n}\right|$, for the boundedness, we actually need to have a trimming on it such that $w_{i j, n}=c_{e 0}$ if $\left|z_{i, n}-z_{j, n}\right|<d_{e 0}$, where $c_{e 0}$ and $d_{e 0}$ are constants. This seems sensible, otherwise, units with similar values of z would have extremely strong influence on each other.

[^3]: ${ }^{5}$ As in Lin and Lee (2010), with an unknown heteroskedasticity in ξ_{n}, i.e., $E\left(\xi_{i, n}^{2} \mid \varepsilon_{i, n}\right)=\sigma^{2}\left(\varepsilon_{i, n}\right)$, the quadratic moment may be modified to $E\left[\xi_{n}^{\prime}\left(M_{n}-\operatorname{Diag}\left(M_{n}\right)\right) \xi_{n}\right]=0$, where $\operatorname{Diag}(A)$ for a square matrix A denotes the diagonal matrix formed by the diagonal elements of A, for consistent estimation.

[^4]: ${ }^{6}$ As $c_{0}^{-\rho_{i j}}$ decreases faster than $\rho_{i j}^{-c_{3} d_{0}}$, all the results hold for the case of $0 \leq w_{i j, n}^{d} \leq c_{1} c_{0}^{-\rho_{i j}}$ with some $c_{1} \geq 0$ and $c_{0}>1$.

[^5]: ${ }^{7}$ Here is a simple proof: Suppose that for some $c \neq 0, S_{n}(\lambda)^{\prime} S_{n}(\lambda)=c S_{n}^{\prime} S_{n}$ with probability one. It follows that ($1-$ c) $I_{n}+\left(c \lambda_{0}-\lambda\right)\left(W_{n}+W_{n}^{\prime}\right)+\left(\lambda^{2}-c \lambda_{0}^{2}\right) W_{n}^{\prime} W_{n}=0$ with probability one. Under the linear independence of $I_{n},\left(W_{n}+W_{n}^{\prime}\right)$, and $W_{n}^{\prime} W_{n}$, it must be $c=1$ and $\lambda_{0}=\lambda$.

[^6]: ${ }^{8}$ With an exogenous spatial weights matrix, Liu et al. (2010) have derived the best selection of moments for GMM estimation. However, due to complexity of the model with endogenous spatial weights matrix, the construction of the best GMM moments remains an open question.

[^7]: ${ }^{9}$ We try the DGP of some other values of β and γ. The results are similar.

[^8]: ${ }^{10}$ These two results are special cases of those in Jenish and Prucha (2012) where the base random field can be spatial mixing processes. Here we have the base being i.i.d. variables for simplicity, which is sufficient for our model.

[^9]: ${ }^{11}$ For this claim, it is sufficient to have $c_{3}>1$ in Assumption 4.1) instead of the larger c_{3}.

[^10]: ${ }^{12}$ The expectation is with respect to ε_{n} only but not with respect to estimated parameters, such as $\widehat{\lambda}$. The expectation function is then evaluated at the estimated parameters.

