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1 Introduction

The spatial autoregressive (SAR) model is of great interest to economists because it has a game structure
and can be interpreted as a reaction function. It is widely used in spatial econometrics and for modeling
social networks. In spatial econometrics, the SAR model has been applied to cases where outcomes of a
spatial unit at one location depend on those of its neighbors. The corresponding spatial weight matrix
is a measure of connections among different locations. Consequently, the spatial dependence parameter
provides a multiplier for the spillover effect. SAR models can also be used to model social networks. For
example, a student’s behavior (such as smoking or academic achievement) can be directly affected by his/her
friends’ behaviors. The weight matrix can then be constructed by using friendship relations, and the network
(spatial) dependence parameter can be interpreted as the strength of peer effects. As measuring spillover and
peer effects has strong policy implications, such as setting school policies, correct estimation of the spatial
dependence parameter is important to both theory and practice.

Estimation methods for the SAR model with an exogenous spatial weight matrix has been well established
in the literature: the maximum likelihood estimation (MLE) of Ord (1975) and Lee (2004); the instrumental
variable (IV) methods of Anselin (1980) and Kelejian and Prucha (1998, 1999), and the generalized method of
moments (GMM) of Lee (2007), Lee and Liu (2010), Lin and Lee (2010), and Liu et al. (2010). Consistency
and asymptotic normality of these estimators are established under the assumption that the spatial weight
matrix is strictly exogenous. This exogenous assumption may hold when spatial weights are constructed using
predetermined geographic distances; for example, between different cities or countries. However, if “economic
distance” such as the relative GDP or trade volume is used to construct the weight matrix, then it is very
likely that these elements are correlated with the final outcome. Similarly, in the social network framework,
some unobserved characteristics may affect both the friendship relationship and behavioral outcomes (Hsieh
and Lee 2011). Therefore, in many applications, the exogenous spatial weight assumption might be violated.

However, due to the technical complication in estimating spatial models with an endogenous spatial
weight matrix, to the best of our knowledge, so far no estimation method has been proposed for this case. In
Pinkse and Slade (2010), they pointed out future directions of spatial econometrics. Endogeneity of spatial
weights was among several problems they emphasized. They concluded that “many of these are still waiting
for good solutions” and the endogeneity problem “can admittedly be challenging.”

In this paper, we attempt to tackle the issue of endogenous spatial weights. By modeling explicitly
the source of endogeneity, we obtain two sets of equations — one is for the SAR outcome, and the other
is for entries of the spatial weight matrix. The disturbances in the SAR outcome equation and the error
terms in the entry equation are allowed to be correlated. When their correlation coefficient is nonzero,
the spatial weight matrix becomes endogenous. We focus on estimation issues for this type of SAR model.
By imposing assumptions of conditional mean independence and homoskedasticity, we can overcome the
endogeneity problem using the control function method. By exploring the unobservable control variables

for endogeneity in the outcome SAR equation, we propose three estimation methods. The first estimation



method is a two-stage instrumental variables (2SIV) approach. In the first stage estimation, we consistently
estimate the parameters of the entry equation. In the second stage, we replace the unobserved control
variables in the outcome equation by the residuals of the entry equation, and then use the standard IV
methods to estimate the SAR outcome equation. The second method we propose is the quasi-maximum
likelihood estimation (QMLE), in which all the parameters can be jointly estimated via a normal likelihood
function of the equation system even the disturbances in the model are not normally distributed. The third
method is a GMM approach, in which an outcome equation with control variables for endogeneity provides
additional quadratic moments for estimation.

The main aim of this paper is to show the consistency and asymptotic normality of aforementioned
three estimators. The estimators involve statistics with linear-quadratic forms of disturbances, in which the
quadratic matrix depends on the spatial weight matrix. As entries in the spatial weight matrix are non-
linear functions of disturbances, those statistics are not really of quadratic forms with nonstochastic quadratic
matrices. Therefore, the standard asymptotic results for linear-quadratic forms do not directly apply to the
situation here. Instead, we adopt the asymptotic inference under near-epoch dependence (NED) from Jenish
and Prucha (2012)E| Our key work is to show the NED properties of random variables and functions involved
in our estimators. To do that, we assume either the spatial weight matrix is sparse or the upper bound of
its elements decreases as a power function of the physical distance. Therefore, in our setting, the physical
distance plays an important role to constrain the magnitude of the spatial weights.

The rest of this paper is organized as follows. In Section 2, we present the model specification of the
outcome equation and the entries of its spatial weight matrix. In Section 3, we propose the 2SIV, QML
and GMM estimation methods for this model. Consistency and asymptotic normality of estimates from
these methods are derived in Section 4. Some extensions with a generalized control function are discussed in
Section 5. In Section 6, Monte Carlo simulations are provided to investigate finite sample properties of our
proposed estimators and compare their performances with those under the exogenous spatial weight matrix
assumption. Related expressions of the log quasi-likelihood function are collected in Appendix A. Proofs of

all the lemmas, propositions, and theorems are given in Appendix B.

2 The model

2.1 Model specification

Following Jenish and Prucha (2009 & 2012), we consider spatial processes located on a (possibly) unevenly
spaced lattice D C R%, d > 1. Asymptotic methods we employ are increasing domain asymptotics: growth

of the sample is ensured by an unbounded expansion of the sample region as in Jenish and Prucha (2012)E|

1In our earlier version, we explore finite neighbor’s dependence which would be similar to m-dependence in time series
analysis. But the NED is more general as we have found in this version.
2Infill asymptotics have not been developed for a NED process in the literature.



Assumption 1 The lattice D C R%, dy > 1, is infinitely countable. All elements in D are located at
distances of at least pg > 0 from each other, i.e., ¥Yi,j € D : p;; > po, where p;; is the distance between

locations © and j; w.l.0.g. we assume that py = 1.

As our asymptotic analysis is based on inference under the spatial near-epoch dependence for increasing
domain but not for infill asymptotics, physical distance plays an important role in keeping agents apart
from each other. For the case of pure economic distance, if there were economic factors which keep agents
apart, we might replace the “physical distance” in Assumption [1| by economic distance. In this regard, with
Assumption [I] our model will be more relevant for regional economic studies rather than social network ones.
In regional issues, physical distance would definitely play a role.

Let {(¢in,vin); © € Dy, n € N} be a triangular double array of real random variables defined on a
probability space (§2; F; P), where the index set D,, C D is a finite set, |D,| is its cardinality, and D
satisfies Assumption 1. Let

Zn = Xopl' + &4, (2.1)

where X, is an n x kg matrix with its elements {z3,,; ¢ € Dy, n € N} being deterministic and bounded
in absolute value for all ¢ and n, I" is a ko X pa matrix of coefficients, €, = (€15, ...6n,n)" I8 an n X py matrix
of disturbances with €;,, = (€1,in;---€p,,in)’ being po dimensional column vectors, and Z, = (z1,n,-.-2n,n)’
is an n X pp matrix with z;, = (21,in, --Zpy,in)’ - Wi = (w”n)ﬁ is an n X n non-negative matrix with zero
diagonals and its elements constructed by Z, : wi;.n = hij(Zy) for 4,5 = 1,...,n; i # j, where h(-) is a

bounded functionﬁ Y, = Win - Ynn) 18 an n x 1 vector from a cross-sectional SAR model specified as
Yn = )\Wnyn + Xln/B + an (22)

where X7, is an n x k; matrix with its elements {z1n; # € Dy, n € N} being deterministic and bounded in
absolute value for all 4 and n, V,, = (15, ..., Unn)’, A s a scalar, and 8 = (51, ..., Bk, ) is a k1 x 1 vector of

coefficients.

2.2 Model interpretation

We consider n agents in an area, each endowed with a predetermined location i. Any two agents are
separated away by a distance of at least 1. Due to some competition or spillover effects, each agent i
has an outcome y; , directly affected by its neighbors’ outcomes y;ns The outcome equation is y;, =

)\Zj# WijnYjn + x'unﬁ + v;,n, where the spatial weight w;j, is a measure of relative strength of linkage

3Here we simplify the notation by regarding the subscripts i and j as integer values to indicate entries in a vector or matrix
even though ¢ and j refer formally in Assumption [I] to locations in the lattice D contained in the dp-dimensional Euclidean
space R<.

4In the example that W, is constructed by Wijn = 1/|2in — 2zjn|, for the boundedness, we actually need to have a trimming
on it such that w;jn = ceo if |2i,n — 2jn| < deo, Where ceq and deg are constants. This seems sensible, otherwise, units with
similar values of z would have extremely strong influence on each other.



between agents ¢ and j, and the spatial coefficient A provides a multiplier for the spillover effects. However,
the spatial weight w;; ., is not predetermined but depends on some observable random variable Z,,. We can
think of z;, as some economic variables at location 7 such as GDP, consumption, economic growth rate, etc,
which influence strength of links across units.

This specification has been used in the literature, and it may introduce endogeneity into the spatial weight
matrix. For example, Anselin and Bera (1997) provided several examples in economic applications on the
use of weights based on “economic” distance. In Case et al. (1993), weights (before row normalization) of the
form w;j;n, = 1/|2; n — 2j,n| were specifically suggested, where z; , and z;, are observations on “meaningful”
socioeconomic characteristics. In Conway and Rork (2004), they used migration flow data to construct
a spatial weight matrix. Another example is in Crabbé and Vandenbussche (2008), where in addition to
the physical distance, spatial weight matrices were constructed by inverse trade share and inverse distance

between GDP per capita.

2.3 Source of endogeneity

We have the following moment assumption.

Assumption 2 The error terms v;,, and &, n, have a joint distribution: (Uz',mg;’n)/ ~ 1.1.d.(0,X,), where

2 !

Yipe = N ve is positive definite, o2 is a scalar variance, covariance oy = (Oye, ey, ) is a po
Ove e

dimensional vector, and X is a pa X p2 matriz. The sup; ,, E|v; n|**% and sup, ,, Bl|e; »||* T eist for some

de > 0. Furthermore, E(v; nl€in) = 5§7n5 and Var(viplein) = 052.

The endogeneity of W, comes from the correlation between v; , and ¢;,. If o, is zero, the spatial
weight matrix W,, might be treated as strictly exogenous and we can apply conventional methodology of
SAR models for estimation. However, if o,. is not zero, W,, becomes an endogenous spatial weights matrix.

From the two conditional moments assumptions in Assumption [2| we have the ps dimensional column
2

vector § = Zglavs and the scalar 0? =0 — agsEglovs. Denote &, = V,, — €,d, then its mean conditional
on €, is zero and its conditional variance matrix is o'?[n. In particular, &, are uncorrelated with the terms

of €, and the variance of £, is agoln. The outcome equation |i becomes
Y, = MW, Y, + X1,.8+ (Z, — X2,T)6 + &, (2.3)

with E(& nlein) =0 and E({fn\sm) = Ug; and &; ’s are i.i.d. across ¢. Our subsequent asymptotic analysis
will mainly rely on equation , where (Z,, — X5,,I") are control variables to control the endogeneity of W,.
Assumption [2] is relatively general without imposing a specific distribution on disturbances as it is based on
only conditional moments restrictions.

In the special case that (v ,,€],,)" has a jointly normal distribution, then v; ,|e;n ~ N(07 X7 &5, 00 —
ol Y to,) and &, is independent of ¢, in equation .



3 Estimation methods

3.1 The two-stage IV estimation
In the first stage, we estimate Z, = X5,I' + &, by the ordinary least squares (OLS) method, so T =
(X4, X2,) "L X}, Z,. Then, in the second stage by substituting T for T in (2.3), we have

Y = AWoYy + X108 + (Zn — XonDl)d + &, (3.1)

where &, = &+ Xon(T—T)8 = &+ Poeyd with P, = Xop, (X}, Xon) "' X}, . Since Z,— X, = P-Z, = Ple,
with Pt = I, — P,, (3.1) can be explicitly rewritten as

Y, = (WoYn, X1n, PEZ,)k + (€4 + Prend), (3.2)

where kK = ( A B )/. For estimation, with the control variables (Z, — X5,T') added in 1' or Pann
in , W,, can be treated as predetermined or exogenous. However, W, Y,, remains endogenous in
and . So for an IV estimation, we need instruments for W, Y,,. Let @,, be an n x m matrix of IVs, then
a 2SIV estimator of k with @,, will be

/’% = [(WnYny X1n7 PnLZn)/Qn(Q{nQn)_lQ;(WnYna Xlna PnLZn)]_la/VnY’ru Xl’ru Pann)/Qn(Q;lQrJ_lQ{nYn

As the composite error (£, + Ppe,0d) is not homogeneous as its variance matrix is II,, = Ugoln + 8422000 P,

we may also consider a generalized 2SIV (G2SIV), which is

7%G = [(WnYnaXlna PyJL_Zn)/H;1Qn(QInH;1Qn)71QInH;1(WnYnaXlna P#Zn)]il
(Wnan X1n7 P#Zn)lnngn(Q%H;IQn)_lenglyn

In practice, as II,, involves unknown parameters, they need to be consistently estimated by some initial
estimates so as to have a consistent ﬁn, and a feasible G2SIV. The details of such a construction are in
Section 4.4.

3.2 The quasi-maximum likelihood estimation

2 ’
As in White (1982), based on the i.i.d. disturbances (v n,¢},,)" ~ (0,3) with X, = v (;’E >, we
i UUE g

can directly write down the log quasi-likelihood function under a normal distributional specification as:
InL, = —nln(27) — gln S0e| + I |S, (V)] (3.3)

) et Sn(NY, — X1,
B 5[(Sn()\)yn - Xlnﬂ)v (vec(Zn - inr)) ](Eﬂa ® In) ('UBC(Zn - XQ:LF)),



where S,,(\) = I, — A\W,,. Alternatively, by the partitioned quadratic formulation that

('Ui,na Eg,n)z;-:l ('Ui’n, 5;,11)/ = (vi7n - Ui}szs_lsiyn)/(o—g - leszs_lavf)_l(vi,n - O-;)szs_lgi,n) + E;,nzs_lsimm

the log quasi-likelihood function can also be written as

n n 1 — _
InLy(0) = —nln(2m) — 5 In of +1n ]S, (N)| - oISl -5 > (2l = by D)8 (2in — D) (3.4)
i=1
1
- ﬁ[sn(/\)yn - Xlnﬁ - (Zn - XZHF)a]/[Sn(/\)Yn - Xlnﬁ - (Zn - XQnF)é}
3
where 6 = (), 5/, vec(T'), 0?, o/, ¢") with a being a J-dimensional column vector of distinct elements in X,
§ = ¥ toy,., and O'g =02 -0/ Y 'o,.. The QMLE 0 = argmaxgeo In L, (f). A necessary condition is

ve €
w = 0, where the first order derivatives of the log quasi-likelihood function are listed in Appendix A.

3.3 The generalized method of moments estimation

Let X, collect different column vectors in Xi,, and Xo,,. For the GMM estimation, as X, is strictly exogenous

and E (& nlein) = 0, a possible set of linear moments for estimation can be
E(X;an) =0, E((Man)/fn) =0, and E((MnZn)lfn) =0,

where M, is an n X n matrix which can be constructed from I, and W,,. For example, a finite number of
matrices M,, can be either I,,, W;mlwgw, Gn, G, and G! G, where G,, = W, (I, — \oW,,) ™!, for some
nonnegative integers m; and mso. In addition to linear moments, we have quadratic moments E[¢], (M,, —
tr(My)I,/n)é,] = 0 from the assumption E(&7,,[ein) = agﬂ

Let @, be an n x m* matrix with elements of M,Z, and M,X,, then the corresponding empirical

moments can be:

(1) X, (Zn — Xanl');

(2) Q[Yn — \W,Y, — X1,.8 — (Z, — X2,1")d]; and

(3) [V, — MW,Y, — X1nf — (Z,, — X2, 1)) [M,, — tr(Mp) I, /0] [Ye, — AW, Y, — X108 — (Z,, — X2,T)4).

With several constructed Mj, matrices, j = 1,...,m, in place of a single M,, matrix, denote the matrices
Pj, = M, — tr(M;,)I,/n for j = 1,...,m, and 0 = (\, #',vec(')’,)’, then the set of moment functions

5As in Lin and Lee (2010), with an unknown heteroskedasticity in &, i.e., E({in\eiyn) = 02(&4,n), the quadratic moment
may be modified to E[¢],(My, — Diag(My))&n] = 0, where Diag(A) for a square matrix A denotes the diagonal matrix formed
by the diagonal elements of A, for consistent estimation.



for the GMM estimation is
gn(09) = (£,(09) Pin&n(09), ... €, (09) Pon&n (609, £,(6%)Qn, vec(e, (09) X)),

where 0 = (), B/, vec(T'), "), £.(09) = Sp(A)Yy — X108 — (Z,, — X2,T')6 and &,(09) = Z,, — Xa,I'. Our
GMM estimator of §€ is derived from 8¢ = arg mingee ¢’,(0)a’, angn (0C), where a,a,, is a positive definite

matrix that may depend on the data.

4 Asymptotic properties of estimators

4.1 Key statistics
The 2SIV
For the 2SIV estimator x and G2SIV estimator K¢,
R — ko = [(WnYa, X1ns P Zn)' Qn(QQn) ™ Qu(Wa Yo, Xin, Py Z,)] "
. (WnYna X1n7 PnLZn)/Qn(Q;lQn)_lQ;I(fn + Pngnéo)

and
7<EG — Ry = [(W anXlnva_ ) lQn(QanlQn) Qn n (W anXI'mP Zn )]
(W }/’ru)(l’ruj:)L ) 1Qn(Qan1Qn) Q 7: (£n+Pn5n50)a
where the subscript 0 on parameters denotes their true values. As II;! = (ogoln + 00000 Pn) "t = (I, —
£0
% ), for the consistency and asymptotic distribution of ¥ and Rg, terms we need to analyze
Teot0p>e

are Q',Qn, Q' Xon, Q' (WY, X1n, Pen), X5 (WoYe, X1n, Ple,), Q&n, and Q' P,e,do. Here W,Y, =
Wi (I, — XoWn) "1 X1nBo + €00 + &n) = Gn(X1nBo + €ndo + &), where G, (N) = W, (I, — AW,,)~! with
G, = Gp(Ao). Let X,, be an n x k matrix collecting all distinct column vectors in X1,, and Xa,. Then, for
the choice of the IV matrix @,,, its column vectors can be linear combinations of X,,, W, X,,, W2X,, ..., and
columns in Pann. For example, if we choose Q,, = (G X,,Gr Zn, Xn,Zn), which is an optimal choice of TV
matrix as derived in the following section, then terms which need to be analyzed for consistency via some

law of large numbers (LLN) are

1 1 1 1 1 1 1
=X, G, X, —X’ G;lsn, fX' nGnen, fX,’LG;ZGan, =X, Gl Gren, =€), Gpen, —enGhGren,
n n n n

1 1
ngllanm X’G’ nén, 6 nGnén, X’G’ Gpé&y, and Es;G;Gngn.

For asymptotic distribution of the estimator, we need to consider the stochastic convergence in distribution



via central limit theorem (CLT) for some of those terms after proper rescaling.

The QMLE

To show the consistency of the QMLE §, first we need to show the uniform convergence of the log quasi-
likelihood function to its expectation, i.e., supgce =|In Ly, () — E(In Ly, (0))] = 0,(1). It is sufficient to show
the uniform convergence of the sample averages of In|S, (\)| and &,(6)'&,(0), where &,(0) = [S,(A\)Y, —
X1nfB — (Z,, — X2,T)d]. Note that

€n(0) = Sn(N) S, H(X1nB0 + Vi) — X1nB — [X2n(To — T) 4+ €,]8
= ()\O - )\)Gn(XlnﬂO + En(SO) + Xln(BO - ﬁ) - X2n(FO - F)(S + En(éo - 5) + [In - (/\ - )‘O)Gn}gnu

where S, = I,, — AgW,,. From the Taylor expansion,

n o0

TinfSu()] = I fL AW = % 3 [Z X, ]

i=1 Ll=1

3

Hence, in the log quasi-likelihood function, the terms which need to be analyzed are

1 1 1 1
~ X GG X, — X! G X, =X Glen, — X Gréen, X’ GG § GG X, E;Gan, f Gl en;
n n n n

1 1 1 1 A
£, Gy ~EhGHCnEn, € ChGnEn, hGnns ~EhEn, —EnCaGrtn, and le (Wi

i=1 Ll=1

for consistency via LLN, and some properly rescaled terms for their asymptotic distributions via CLT.

The GMM
The GMM is based on the first two moments of &, and &,. Some elements in g, (0“) have similar

expressions as those in the 2SIV estimator and QMLE. Some have new features to analyze, such as

1., 1, 1, 1 1
—X' M., X, ~e, M. e, ,fg;LM;gn, —X'G. M, X,, a "G M ey —E G M,

n n n

1 1 — J— 1 — _
—X! G M, GnX,, g ' G\, Gnam Y xe M;Gngn, fX;Mnan, — X! M. &, fg;M;gn,
n n n n n

1 - — 1 — 1 —
7X’I{LG7LM’/I’LETL) X/G M gna 5 G M €n> X’;LGRM:’LGTLETL7 7X’:LG71M’/!LGTL§TL7 *EfnGnM/nanna
n n n

where M, = M, — tr(M,)I,/n and M, is either G, G/, or G',G,, in our example if we choose @, =
(GnX0n,GnZp, X0, Zy). In general, M, can be I,, anlI/V[L”?, G, Gl, and G| G, for any nonnegative

integers my and ms.



4.2 Assumptions and topological structures

To analyze terms in above key statistics, we need additional assumptions and topological structures.

Assumption 3 3.1). For any i, j, and n, the spatial weight w;j, > 0, wi; , =0, and ||[Wy||e = cw < 00.
3.2). The parameter 6 = (X, 3',vec(T), 02,0’ ') is in a compact set © in the Buclidean space RFe.
Here kg = k1 + 2 + kops + p2 + J, where ky is the dimension of B, py is the dimension of oy, kapo s the
number of parameters in I', and J is the dimension of a with o being the vector of all distinct elements in
Y. The true parameter 0y is contained in the interior of ©. Furthermore, supycy |Acw < 1, where A is the
parameter space for \.
3.8). Let the k x n matriz X,, collect all distinct column vectors in X1, and Xo,. All elements in X,, are

deterministic and bounded in absolute value. lim,,_, o %X;LX” exists and is nonsingular.

Assumption 4 We consider two cases of Wp,:

4.1) Case 1: The spatial weight w;; ., = hij(Zin, Zjn) fori# j, where h;;(-)’s are non-negative, uniformly
bounded functions of some observable variable Z,. 0 < wy;, < clp,»j_cﬁ'do for some 0 < ¢1 and c3 > Zﬂ
Furthermore, there exist at most K (K > 1) columns of W, that the column sum exceeds c,,, where K is a
fixed number that does not depend n.

4.2) Case 2: The spatial weight wij, = 0 if p;j > pe, i.e., there exists a threshold p. > 1 and if
the geographic distance exceeds p., then the weight is zero. For i # j, Wijn = hij(Zin, 2jn) O Wijn =

hij(Zim, Zjm)/ ank<pc hik(Zin, 2k.n), where hi;(+)’s are non-negative, uniformly bounded functions.

Assumptions [3| and [4] provide the essential features of the weights matrix and parameters for the model.
Assumptions 3.1) and 3.2) are standard assumptions in the spatial econometrics literature to limit the spatial
correlation in a manageable degree. Assumption 3.3) requires that all distinct regressors in X3, and Xs,
are linearly independent. Note that Assumption 3.3) allows the special case that X3, and X, are the
same. Due to interactions of W,, and Y,,, and nonlinearity of Z,, in W,,, as contrary to a linear simultaneous
equation system, exclusive restrictions on regressors for identification may not be needed. From Assumption
[ we can see that the geographic distance plays an important role in constraining magnitudes of our spatial
weights. The spatial weight of two locations would be larger if they were closer to each other or when their
economic indices were more similar, but their weights would become smaller when two units are further apart.
Assumption 4.1) allows the situation that all agents are spatially correlated but the spatial weight decreases
sufficiently fast at a certain rate as physical distances increase. Symmetry is not imposed on the spatial weight
matrix. If W, is indeed symmetric, then by Assumption 3.1), the column sum will also be uniformly bounded
by ¢,. In that case, the second part on the column sum norm condition in Assumption 4.1) will not be
needed. However, in general, W,, can be asymmetric, i.e., h;j(%in, Zjn) 7 hji(2jn, Zin). For an asymmetric

W, the second part of Assumption 4.1) limits the number of columns which have large magnitudes relative

6As cgp” decreases faster than p;j%do, all the results hold for the case of 0 < wflj n < clcgpij with some ¢; > 0 and ¢o > 1.

10



to the row sum norm. For example, big countries may have great impact on small countries, but those small
countries may have little or zero influence on big countries. In this example, we have some “stars” whose
row sums are bounded by ¢,,, while their column sums can be much larger. Assumption 4.1) assumes that
the number of such stars can only be finite and bounded. Assumption 4.2), also imposed in Qu and Lee
(2012), allows for a row-normalized spatial weight matrix: w;j.,, = hij(Zin, 2jn)/ Zpikgpc hik(Zins Zien)- In
this case, w;;, might have agents linked in an area, which could be wide, but once the geographic distance
between two agents exceeds a threshold, the two units are not spatially interacted.

Our asymptotic analysis of the proposed estimators will be based on inference under NED. The following
notion of NED for random fields is from Jenish and Prucha (2012).

Definition 1 For any random wvector Y, ||Y||, = [E|Y|P]}/? denotes its L,-norm where |Y| is the Eu-
clidean norm of Y. Denote F; ,,(s) as a o-field generated by the random vectors ;,,’s located within the ball

B;(s), which is a ball centered at the location i with a radius s in a dg-dimensional Euclidean space D.

Definition 2 (NED) Let T = {T; n,i € Dp,n > 1} and s = {Sin,i € Dy,n > 1} be random fields with
[|T;nllp < 00, p>1, where D, C D and |D,,| = 0o as n — oo, and let d = {d; n,i € Dy, n > 1} be an array
of finite positive constants. Then the random field T' is said to be Ly,-near-epoch dependent on the random
field s if ||Tim — E(Tin) Fin(8)|lp < dinp(s) for some sequence p(s) > 0 such that im0 ©(s) = 0. The
©(s), which is, without loss of generality, assumed to be non-increasing, is called the NED coefficient, and
the d; n’s are called NED scaling factors. T is said to be L,-NED on ¢ of size —a if ¢(s) = O(s™*) for
some j1 > « > 0. Furthermore, if sup, sup;cp din < oo, then T is said to be uniformly L,-NED on <. If
o(s) = O(p®), where 0 < p < 1, then T' is called geometrically L,-NED on g.

4.3 Asymptotic inference of key statistics

Let Ci*,n be a vector-valued function of the error term ¢, = (€;1,& ) and the observed X, i.e., %‘*,n =
fi(&ins&ins X, 00). As X, is deterministic, ¢, is purely determined by the location 7, independent of error
terms associated with any other places. Let M,, = A/ B,,, where A4,, and B,, are either W or G'* with
my and my being finite non-negative integers. Denote ¢ = (51, ... ,). The NED property of the statistic
a’s} Mys:b for some constant vectors a and b with ; ,, as the basis for the NED is established in Appendix
C.1 under Assumption 4.1) for the case 1 and in Appendix C.2 for case 2 under Assumption 4.2). Then
based on the asymptotic inference under NED, we have the following LLN.

Proposition 1 Under Assumptions |1, 3.1), and suppose sup; ,, |[¢7,||l4 < oo, then LEla/¢;/ Mysib| =

O(1) and L[a'c}' M,cib — E(d/s/ Mucib)] = 0,(1), where a and b are conformable vectors of constants.
Furthermore, with the compactness of the parameter space of 8, we have the following ULLN.

Corollary 1 Under Assumptions 3.1), 3.2), and suppose sup; ,, |[¢F /|4 < oo, then

11



La/r(0) G (N) G2 (N)s (0)b is stochastic equicontinuous and

sup %IG'CZ(WGT (V)G (N5 (0)b — E (s (6) G () G2 (M) (0)D)] = 0, (1),

where gl*n(ﬁ) = fi(€in,&imn, Xn,0) with 0 entering f; polynomially, m1 and mo are finite non-negative inte-

gers, and a and b are conformable vectors of constants.

Denote
m n
Ry = Z[a;g;:/ j”g;bj - E(a;(:;/ jngzbj)] = Zri,na
=1 i=1
where each Mj, matrix, j = 1,...,m can be expressed as M;, = AgnBjn with Aj, and Bj, being ei-
ther W, or G;*2. Denote o, as the variance of R, and r;, = Y7, >0 [a)s), Mjn (i, k)s}: by —

E(als),, Mjn(i,k)sp; ,b5)]. Then R, = 37" 7, and 0%, = Var(3.;; rin). We have the following CLT
for R,.

Proposition 2 Under Assumptions @, 3.1), and suppose sup; ,, ||s7,|a+s. < 0o for some 5. > 0, and
inf,, %012_2” > 0, then R, /oRn a4 N(0,1).

The LLN in Proposition[I]and the CLT in Proposition [2 provide the essential tools for asymptotic analysis
of the consistency and asymptotic normality of the 2SIV, QML and GMM estimators in our model.

4.4 Consistency and asymptotic normality of estimators

The 2SIV
To show the consistency and asymptotic normality of the 25TV and G2SIV estimators, in addition to the

convergence of each separated term, we need some rank conditions on relevant limiting matrices.

Assumption 5 5.1) Columns of Q,, are from M,q, and M,Z,, where g, is a strictly exogeneous vector
and M, = Al B, in which A,, and B,, are either W™ or G with my and ms being finite non-negative
integers.

5.2) 7}1{20%E(QI”Q”) exists and is nonsingular;

5.3) lim LE[Q! (G (X1nB0 + €ndo), X1n,€n)] has full column rank.
n— oo

It is of interest to note that endogeneity of W,, in our model may provide parameter identification via
the IV estimation, even if there are no relevant regressors Xj, in the SAR equation. In the SAR with an
exogenous W,,, if there are no regressors X;,, in the equation, i.e., 8y = 0, its corresponding limiting matrix
lim,, 00 %E[Q;(GnXlnﬁo,Xln)] = [0,limp, 00 %Q;Xln] would not have full column rank. However, with

endogeneity, lim %E (@), (Grendo, Xin,€n)] may have full column rank.
n—o0

12



Theorem 1 Under Assumptions the 251V estimator K and the G2SIV estimator kg are consistent
estimators of ko. Furthermore, \/n (R — ko) < N(0,2;v) and v/n(Rg — ko) 4 N(0,Xqrv), where

Sy = phmn(U AgnUn) UL A1, Ay U (UL Ay Un) ™1 and
n—oo

Yarv = plimf[U;H#Qn(Q;H#Qn)‘lQ;H;IUn]‘l
n—oo T

with U, = [Gn(Xlnﬁo + 5n50)a legn] and Aqn = Qn(Q;an)_lQ;z

By the Cauchy-Schwarz inequality, U/ T, 1Q,, (Q\ 11,1 Q) ~1Q/ 111U, < U/T,;1U,, and the “=" holds if
the columns of U,, are in the linear space spanned by the columns of @,,. Therefore, if column vectors in the
IV matrix @, consist of G, X,,, G, Z,,, X, and Z,, then the best G2SIV estimator based on this optimal
@, has the smallest limiting variance X pgry = phm -(U, T U,

However, the best G2SIV estimator is not fcas1blo because Ugo and 0)X.000 in II,, as well as A\g in G,, are
unknown. In practice, we may use X, W, Xn, W, Z,, etc. as IV matrices to get an initial consistent estimate
® by 2SIV, and then using G, ( )X, Gp ( )Zn7 Xn,and Z,, as new IVs and Substltutlng i, g[ +0'S.5P,,
where 3, = 1Z’ PlZ, and O'E = 7( = AW, Y, lenﬂ Pz, 6) (Y, —AW,Y, Xlnﬁ Ptz 5) for IT,,
to obtain the feasible best G2SIV estimator Kppgry. The following theorem shows that Krpgry has the

same limiting distribution as the best G2SIV estimator.

Theorem 2 Under Assumptions the feasible best G2SIV estimator Kppary s a consistent estimator
~ d
Of Ko and \/ﬁ(HFBGIV — Ko) — N(O,EBG]\/).

The QMLE

Assumption 6 Fither a) lim,,_ %E[(Gn(Xlnﬂo +€100)s X1n, en) (Gn(X1nBo +€nd0), Xin,en)] exists and
is nonsingular, or b) S, (X) S, () is not proportional to S;,.S, with probability one whenever A # Ag.

Assumption |§| is an identification condition for the model. Assumption @1) is a rank condition, which
is similar to Assumption 5.3) for the 2SIV. Assumption @b) explores the ii.d. disturbances of the model
so that the reduced form of Y,, has a unique variance structure. A sufficient condition that guarantees the
linear independence of S, (\)' S, () with S/ S, is that the matrices I,,, (W,, + W)) and W W,, are linearly
independentm Assumption |§| also implies that the information matrix of this model is nonsingular as shown
in Claim

With identification, the uniform convergence of supgeg = [In Ly, (6) — EX In L, (6)| %0 and the equicon-
tinuity of nh_)rréo %E In L,,(6p) together imply the consistency of the QMLE.

"Here is a simple proof: Suppose that for some ¢ # 0, Sp(A\)'Sn()\) = ¢S/, Sn with probability one. It follows that (1 —
) In + (cho — N)(Wy, + W2) + (A2 — eA2)W/ W, = 0 with probability one. Under the linear independence of I, (Wxn + W},),
and W, Wy, it must be c =1 and Ag = A.
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Theorem 3 Under Assumptions and@ the QMLE 8 is a consistent estimator of 6y and \/ﬁ(g)\f o) 4
N(0,Zgm1L), where

n—oo N 00 o0’

9?InL,(0).\ 1 0lnLy,(6) 81n Ly (6,)
) ) n—oon 0000’

1 ) .1 _0%InL,(6) -1

YomL = (nh—{go EE( 5000 lim —F( lim —E(—————%) )

Expressions for each term of ¥gasz are in Appendix A. In the special case that (v;n,e;,,)" is jointly

-1

normal, QMLE becomes MLE and the asymptotic variance is simply — (nlggo E(%W)) .

The GMM

One advantage of the GMM approach compared to the QML method is that the GMM estimator can
be computationally simpler as the determinant of the Jacobian transformation, |I,, — AW, |, needs not to be
evaluated whereas with QMLE it does. To prove the consistency and asymptotic normality of the GMM

estimator, we impose following assumptions.

Assumption 7 7.1) The nxm* IV matriz Q,, has its columns from M, q, and M, Z,, where g, is a strictly
exogeneous vector and M, = Al By, in which A, and B, are either W™ or GI'?> with my, and mz being
non-negative integers. The n x n square matrices Pjy, = M, —tr(M;,)I,/n (j = 1,...,m for some finite m)
have zero trace.

7.2) plimLa,g,(0%) = 0 has a unique root at 65 in OF.

n— o0
G
7.3) plim%anDn exists and has the full rank (1 + ki + kaps + p2 ), where D, = —plim%%gei(g?).
n—00 n—o0

For simplicity, 7.2) in Assumption |7]is a high level sufficient condition for identification. Given specific
moments as suggested in section 3.3, it is possible to have Assumption 7.2) satisfied with some sufficient
conditions on @, and Pj,’s as in Lee (2007). The simplest sufficient condition is the ability to construct
consistent IV estimation of the model equations by some proper IV matrix @,,, as in Assumption

By applying Propositions [I] and 2] we have the following theorem.

Theorem 4 Under Assumptions and@ the GMM estimator gff = arg mingee ¢, (09)al,ang,(0%) is a
consistent estimator of 0§, and \/ﬁ(@? —65) A N(0,Xcnar), where

1
SoMM = nh—>I2<> E(D;a;anDn)_1D;a;anﬂn(0§)a%aHDn(D;a;anDn)_l,

with Dy, = —%3(95'97(296)) and Q,,(05) = Var(g,(05)).

Detailed expressions of D,, and Q,,(6§) are in (C.5) and (C.6) of Appendix C. By the generalized Cauchy-

Schwarz inequality, the optimal weighting matrix for the GMM estimation with the moment functions g,, (%)
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is [2,(05)] 1. Then, with a consistent estimator €, of 2,,(65), the feasible “optimal” GMM is obtained from
mingeo ¢, (09)Q1 g, (6°) and it will have the smallest asymptotic variance (limy,_,oq ipl [Qn(ﬂg)]’an)*l

4.5 Estimated variance-covariance matrix of estimators

For QMLE, all parameters in 6 are jointly estimated, so directly we have a consistent estimator of O'go.
For 25TV and GMM methods, we do not estimate ago directly and therefore need to construct a consistent
estimator for it. Expressions for the estimated variance-covariance matrix of Xy and Y ggry are based on

the following result.

Claim 1 Suppose (A (A,B’ﬁ’ 3\)’ is a consistent estimator of (Ao, 54,7, 00), then T 05 = 1&& is a consistent
estimator of 05 , where £n =S, ( )Y, — Xlnﬂ (Z, — Xgnf)g. Furthermore, if (Ao, 875, 00) is replaced
with ()\ B’,A’ )’ and €, with &, = Z, *in n Xy and X garv to obtain, respectively, empirical estimates

S D, S D,
Siv and Spary, then Sry % Sy and Sparv 2 Sparv.

Based on this Claim, the estimated asymptotic variance-covariance matrices for the 2SIV estimator %

and the feasible best G2SIV estimator Krppgry are, respectively,

14 D P P PP P PN P
~Spy = (U} AgnUpn) UL A1, AU (UL AgnUy,) 1 and —Ypary = ot
where
Un = [GaN)(X1nB + PLZ,5), X1n, P Z,) and 10, = 621, + §'S.0P,, with
o 1
Y. = fZ’PLZ and 62 = — (Y, — AW,Y;, — X108 — PEZ,0) (Ve — AW, Yy — X108 — PLZ,05).
n

For Ygnr and Ygarar, we have similar terms as those in Y1y, but also special ones involving the third
and fourth orders of &;,, such as Z B3, Gin(X1nB0 + £n00)Giin] and %E?:l E( ?’nGii,n). But they
can be estimated by empirical moments w1th estlmated coeflicients.

Claim 2 If 6y is replaced with a consistent estimator é\, en With &, = Z,, — Xgnf, and &, with @n, where
§m is the ith element of §n =5, ( )Y, — Xlnﬁ (Zyn —Xgnf\)g, in Xomr and ey to obtain, respectively,

empirical estimates EQML and EGMM, then EQML LN Yomr and EJGMM LN YoMM-

5 Extension to nonlinear conditional mean

Our previous analysis is based on the linear conditional mean E(v;,|¢;n) = €;,0 in Assumption As

a possible generalization, the linear conditional mean can be relaxed to a polynomial function with little

8With an exogenous spatial weights matrix, Liu et al. (2010) have derived the best selection of moments for GMM estimation.
However, due to complexity of the model with endogenous spatial weights matrix, the construction of the best GMM moments
remains an open question.
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additional complication for our proposed estimators. For simplicity, assume ps = 1 and E(v;nlein) =

ZZ=1 €7,0m, where 7 is a finite positive integer. For an n x 1 vector b = (b;), b™ denotes an n x 1 vector

with the ith element as b". Then equation ([2.3]) can be generalized to
Y, = AW, Y, + X108 + Z — X2n7) " Om + -

The log quasi-likelihood function is

In Ly (6) = Il (Za) f (Ya|Za)] = —nIn(2m) = T InoZo? + In|S, ()] - %‘Q(Zn — X0n7)/(Zn — Xo07)
1 m ! -

And the possible set of linear moments for GMM estimation is E(X)e,) =0, E(X,¢,) =0, E(Z)&,) =0,
E(GpnX,) &) =0, and E((Grn(Zy, — Xony)™)' &) =0 for m = 1,...,7m. Note that

hgE|

€n(‘9) = Sn(/\)Yn - Xlnﬂ - (Zn - X2n7)m6m

1

3
Il

= SuN)S (XinBo+ > entdmo + n) — X1nB — ZXM — ) +€n]"0m

m=1 m=1

= (Mo = NGu(X1nBo+ Y e00mo) + X1n(Bo = B) + D en(0mo — Om)
m=1

- Z{[in(% - ’7) + En]m - Ezl}am + [In - (>\ - >\O)Gn]£n

Then in this general setting, the new additional statistics involve higher orders of ¢,, e.g., %sﬁg’ M,z for Iy,

ly,=1,...,m. But Claims [C.1.6] [C.1.7] [C.2.5] and [C.2.6] are general enough to ensure the NED property of
these statistics, so the 2SIV, QMLE and GMM approaches can still be applied here.

6 Monte Carlo Simulations

6.1 Data generating process

In this section, we evaluate four estimation methods of a SAR with an endogenous W,,. The data generating
process (DGP) is
Yn - (In - AI/Vn)_l()(nﬁ + Vn)a
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where z; , = (1,0, Tion) With 241, = 1 and 242, ~ N(0,1); f1 = f2 = 1. Here we let X1, = Xo,, = X.

The endogenous, row-normalized W,, = (w;; ) is constructed as follows:

1
1. Generate bivariate normal random variables (v; ,,&; ) from i.5.d N (0, < /1) >> as disturbances
p
in the outcome equation and the spatial weight equation.

d e

2. Construct the spatial weight matrix as the Hadamard product W,, = WdoW¢, i.e., w;j, = (CHIR T

where W is a predetermined matrix based on geographic distance: wflj)n = 1 if the two locations are
neighbors and otherwise 0; Wy is a matrix based on economic similarity: wy;,, = 1/|2in — 2jn| if i # j

and wg; , = 0, where elements of Z,, is generated by 2;, =1+ 0.8%i2 5, + €; -
3. Row-normalize W,,.

For the predetermined W<, we use four examples. First, the U.S. states spatial weight matrix W .S(49x49),
based on the contiguity of the 48 contiguous states and D.C.; second, the Toledo spatial weight matrix
WO(98 x 98), based on the 5 nearest neighbors of 98 census tracts in Toledo, Ohio; third, the Towa “Adja-
cency” spatial weight matrix W A(361 x 361), based on the adjacency of 361 school districts in Towa in 2009;
and lastly, the Iowa “County” spatial weight matrix W (361 x 361), based on whether the school districts
are in the same county in Iowa in 2009.

In the simulation, we compare four different estimation methods: conventional IV, 2SIV, conventional
MLE of SAR, and the MLE in section 2.4. The conventional method refers to the case of treating W, as
exogenous. We refer to these four methods as IV, 2SIV, SAR, and MLE in tables. Here 2SIV and MLE
correctly treat W, as endogenous, but the conventional IV and SAR methods only estimate the outcome
equation (Z,, equation is not estimated) since they treat W, as exogenous. Of particular interest, we want
to see how large the bias is for the two conventional estimation methods when W,, is endogenous. To
generate different degrees of endogeneity, we choose correlation coefficients p = 0.2, 0.5, and 0.8. We also
let the spatial correlation to be A = 0.2 and 0.4 to investigate how the spatial correlation parameter affects

estimates. 1000 replications are carried out for each settinﬂ

6.2 Monte Carlo results

Tables 1-6 report the empirical mean of each estimator, the empirical mean of its estimated standard error
based on the corresponding asymptotic variance-covariance matrix (in parentheses), and the empirical stan-
dard deviation of the estimator (in brackets) based on 1000 replications using W.S, WO, WA, or WC as
the predetermined spatial weight matrices. In each table, the upper panel shows the results for A = 0.2 and
the lower panel for A = 0.4. To see how the different estimation methods behave under different degrees of
endogeneity, we conduct three sets of simulations: results for weak endogeneity (p = 0.2) are in Tables 1 and

2, medium endogeneity (p = 0.5) in Tables 3 and 4, and strong endogeneity (p = 0.8) in Tables 5 and 6.

9We try the DGP of some other values of 8 and ~. The results are similar.
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Table 1: Estimates from spatial weight matrices with weak endogeneity (small sample)

p=02 WS(n=49) WO(n=98)

A=02] 1V 2SIV SAR MLE v 2SIV SAR MLE
) 0.1229 | 0.1922 | 0.1391 | 0.1808 | 0.0784 | 0.1749 | 0.1241 | 0.1777
(0.2519) | (0.2422) | (0.1362) | (0.1306) || (0.2085) | (0.1986) | (0.1142) | (0.1087)
0.2560] | [0.2659] | [0.1293] | [0.1286] | [0.2043] | [0.2095] | [0.1027] | [0.1010]

B 1.0993 | 1.0036 | 1.0808 | 1.0234 | 1.1680 | 1.0382 | 1.1048 | 1.0327
(0.3743) | (0.3632) | (0.2324) | (0.2266) | (0.2993) | (0.2873) | (0.1834) | (0.1774)
0.3717] | [0.3773] | [0.2283] | [0.2324] | [0.3029] | [0.3044] | [0.1792] | [0.1832]

B 0.9759 | 0.9815 | 0.9884 | 0.9915 | 0.9675 | 0.9852 | 0.9810 | 0.9906
(0.1604) | (0.1606) | (0.1505) | (0.1505) || (0.1173) | (0.1182) | (0.1103) | (0.1105)
(0.1684] | [0.1686] | [0.1588] | [0.1593] | [0.1228] | [0.1230] | [0.1158] | [0.1172]

o 1.0044 1.0044 1.0020 1.0020
(0.1419) (0.1390) (0.1013) (0.1002)
[0.1498] [0.1498] [0.1056] [0.1056]

Vs 0.7987 0.7987 0.8038 0.8038
(0.1533) (0.1502) (0.1102) (0.1090)
[0.1604] [0.1604] [0.1108] [0.1108]

5 0.2012 0.1996 0.1994 0.1998
(0.1545) (0.1416) (0.1072) (0.1003)
0.1616] [0.1523] [0.1093] [0.1023]

X=04]| IV 2SIV SAR MLE v 2SIV SAR MLE
) 0.3198 | 0.3857 | 0.3287 | 0.3736 | 0.2792 | 0.3717 | 0.3159 | 0.3742
(0.2402) | (0.2305) | (0.1253) | (0.1184) | (0.2015) | (0.1883) | (0.1046) | (0.0977)
0.2537] | [0.2593] | [0.1229] | [0.1262] | [0.2028] | [0.2029] | [0.0994] | [0.1005]

B 1.1386 | 1.0173 | 1.1273 | 1.0453 | 1.2201 | 1.0557 | 1.1525 | 1.0487
(0.4614) | (0.4456) | (0.2676) | (0.2571) || (0.3742) | (0.3519) | (0.2117) | (0.2008)
0.4784] | [0.4799] | [0.2705] | [0.2684] | [0.3876] | [0.3822] | [0.2141] | [0.2105]

B 0.9803 | 0.9815 | 0.9924 | 0.9929 | 0.9729 | 0.9855 | 0.9836 | 0.9912
(0.1600) | (0.1598) | (0.1509) | (0.1503) || (0.1158) | (0.1159) | (0.1100) | (0.1096)
0.1670] | [0.1670] | [0.1587] | [0.1587] | [0.1207] | [0.1204] | [0.1150] | [0.1158]

o 1.0044 1.0044 1.0020 1.0020
(0.1419) (0.1390) (0.1013) (0.1002)
[0.1498] [0.1498] [0.1056] [0.1056]

Vs 0.7987 0.7987 0.8038 0.8038
(0.1533) (0.1502) (0.1102) (0.1090)
[0.1604] [0.1604] [0.1108] [0.1108]

5 0.2002 0.1991 0.1995 0.1999
(0.1535) (0.1412) (0.1060) (0.0998)
[0.1599] [0.1415] 0.1076] 0.1016]

Note: Observations n =49 or 98, 51 = 3 =1 = 1, and 5 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 2: Estimates from spatial weight matrices with weak endogeneity (large sample)

p=02 WA (n=361) WC(n=361)

X=02] 1V 2SIV SAR MLE IV 2SIV SAR MLE
) 0.1187 | 0.1986 | 0.1512 | 0.1963 | 0.1536 | 0.1987 | 0.1743 | 0.1954
(0.0908) | (0.0850) | (0.0555) | (0.0531) || (0.0744) | (0.0691) | (0.0418) | (0.0403)
0.0868] | [0.0859] | [0.0541] | [0.0544] | [0.0731] | [0.0697] | [0.0417] | [0.0403]

B 1.1082 | 1.0036 | 1.0654 | 1.0066 | 1.0630 | 1.0037 | 1.0356 | 1.0079
(0.1300) | (0.1232) | (0.0896) | (0.0871) | (0.1116) | (0.1053) | (0.0762) | (0.0747)
0.1275] | [0.1238] | [0.0882] | [0.0868] | [0.1114] | [0.1060] | [0.0753] | [0.0731]

B 0.9919 | 0.9994 | 0.9961 | 1.0003 | 0.9945 | 0.9990 | 0.9981 | 1.0001
(0.0562) | (0.0561) | (0.0554) | (0.0554) || (0.0562) | (0.0560) | (0.0554) | (0.0553)
0.0565] | [0.0563] | [0.0552] | [0.0553] | [0.0564] | [0.0561] | [0.0553] | [0.0553]

o 0.9966 0.9966 0.9966 0.9966
(0.0528) (0.0526) (0.0528) (0.0526)
[0.0543] [0.0543] [0.0543] [0.0543]

Vs 0.8005 0.8005 0.8005 0.8005
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0555] [0.0555] [0.0555] [0.0555]

5 0.2010 0.2005 0.2008 0.2004
(0.0536) (0.0521) (0.0524) (0.0516)
[0.0553] [0.0543] [0.0541] [0.0535]

X=04]| IV 2SIV SAR MLE v 2SIV SAR MLE
) 0.3233 | 0.3980 | 0.3501 | 0.3952 || 0.3591 | 0.3982 | 0.3764 | 0.3955
(0.0855) | (0.0783) | (0.0504) | (0.0476) || (0.0649) | (0.0590) | (0.0353) | (0.0337)
0.0819] | [0.0792] | [0.0499] | [0.0487) | [0.0637] | [0.0596] | [0.0361] | [0.0337]

B 1.1355 | 1.0053 | 1.0886 | 1.0100 | 1.0734 | 1.0051 | 1.0430 | 1.0096
(0.1582) | (0.1462) | (0.1024) | (0.0981) || (0.1256) | (0.1161) | (0.0812) | (0.0790)
0.1549] | [0.1477] | [0.1022] | [0.0983] | [0.1251] | [0.1172] | [0.0813] | [0.0774]

B 0.9974 | 0.9994 | 0.9994 | 1.0006 | 1.0000 | 0.9991 | 1.0012 | 1.0007
(0.0560) | (0.0556) | (0.0554) | (0.0552) || (0.0561) | (0.0556) | (0.0554) | (0.0552)
0.0556] | [0.0556] | [0.0551] | [0.0552] | [0.0554] | [0.0554] | [0.0551] | [0.0551]

o 0.9966 0.9966 0.9966 0.9966
(0.0528) (0.0526) (0.0528) (0.0526)
[0.0543] [0.0543] [0.0543] [0.0543]

Vs 0.8005 0.8005 0.8005 0.8005
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0555] [0.0555] [0.0555] [0.0555]

5 0.2010 0.2005 0.2008 0.2006
(0.0529) (0.0519) (0.0521) (0.0516)
[0.0547] [0.0540] [0.0538] [0.0534]

Note: Observations n = 361, §; = 2 = v1 = 1, and 2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 3: Estimates from spatial weight matrices with medium endogeneity (small sample)

p=05 WS(n=49) WO(n=98)
A=0.2 v 251V SAR MLE v 251V SAR MLE
A 0.0318 0.1967 0.0839 0.1835 —0.0455 | 0.1805 0.0531 0.1819
(0.2554) | (0.2004) | (0.1384) | (0.1164) || (0.2163) | (0.1602) | (0.1169) | (0.0954)
0.2378] | [0.2171] | [0.1292] | [0.1227] | [0.1924] | [0.1672] | [0.1048] | [0.0974]
31 1.2234 0.9985 1.1560 1.0197 1.3352 1.0298 1.2005 1.0268
(0.3781) | (0.3124) | (0.2344) | (0.2123) || (0.3097) | (0.2401) | (0.1863) | (0.1633)
0.3550] | [0.3207] | [0.2339] | [0.2145] | [0.2064] | [0.2508] | [0.1875] | [0.1689]
,§2 0.9626 0.9860 0.9794 0.9920 0.9342 0.9866 0.9615 0.9905
(0.1601) | (0.1603) | (0.1501) | (0.1510) | (0.1185) | (0.1177) | (0.1100) | (0.1109)
[0.1684] | [0.1653] | [0.1580] | [0.1588] || [0.1268] | [0.1214] | [0.1158] | [0.1173]
T 1.0033 1.0033 1.0023 1.0023
(0.1422) (0.1392) (0.1014) (0.1004)
[0.1475] [0.1475] [0.1051] [0.1051]
Yo 0.7984 0.7984 0.8022 0.8022
(0.1536) (0.1505) (0.1103) (0.1092)
[0.1596] [0.1596] [0.1130] [0.1130]
5 0.5050 0.5014 0.4995 0.4989
(0.1376) (0.1257) (0.0960) (0.0893)
[0.1476] [0.1384] [0.1008] [0.0954]
A=04
A 0.2318 0.3921 0.2843 0.3773 0.1593 0.3788 0.2606 0.3792
(0.2510) | (0.1909) | (0.1287) | (0.1062) || (0.2144) | (0.1515) | (0.1082) | (0.0864)
0.2417) | [0.2116] | [0.1250] | [0.1127] | [0.1951] | [0.1600] | [0.1025] | [0.0894]
31 1.2981 1.0072 1.2078 1.0384 1.4337 1.0418 1.2510 1.0396
(0.4796) | (0.3792) | (0.2727) | (0.2394) | (0.3972) | (0.2901) | (0.2175) | (0.1841)
0.4638] | [0.4033] | [0.2791] | [0.2462] | [0.3824] | [0.3075] | [0.2242] | [0.1926]
,23\2 0.9733 0.9858 0.9874 0.9930 0.9471 0.9870 0.9705 0.9910
(0.1609) | (0.1589) | (0.1509) | (0.1505) || (0.1177) | (0.1153) | (0.1099) | (0.1099)
0.1670] | [0.1637] | [0.1579] | [0.1580] | [0.1246] | [0.1190] | [0.1152] | [0.1159]
T 1.0033 1.0033 1.0023 1.0023
(0.1353) (0.1392) (0.1048) (0.1004)
[0.1475] [0.1475] [0.1051] [0.1051]
o 0.7984 0.7984 0.8022 0.8022
(0.1422) (0.1505) (0.1103) (0.1092)
[0.1596] [0.1596] [0.1130] [0.1130]
5 0.5043 0.5013 0.5000 0.4992
(0.1536) (0.1248) (0.0938) (0.0884)
[0.1441] [0.1371] [0.0983] [0.0943]

Note: Observations n =49 or 98, 51 = 3 =1 = 1, and 5 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 4: Estimates from spatial weight matrices with medium endogeneity (large sample)

p=05 WA (n=361) WC(n=361)
X=02] 1V 2SIV SAR MLE IV 2SIV SAR MLE
) 0.0168 | 0.2004 | 0.0853 | 0.1976 || 0.0935 | 0.2002 | 0.1441 | 0.1970
(0.0933) | (0.0698) | (0.0567) | (0.0465) || (0.0772) | (0.0580) | (0.0426) | (0.0359)
[0.0806] | [0.0694] | [0.0536] | [0.0468] | [0.0710] | [0.0562] | [0.0431] | [0.0352]
B 1.2419 | 1.0012 | 1.1520 | 1.0048 | 1.1426 | 1.0016 | 1.0756 | 1.0057
(0.1330) | (0.1059) | (0.0907) | (0.0805) || (0.1150) | (0.0932) | (0.0770) | (0.0708)
0.1235] | [0.1034] | [0.0901] | [0.0781] | [0.1109] | [0.0902] | [0.0780] | [0.0683]
B 0.9748 | 1.0001 | 0.9851 | 1.0005 || 0.9855 | 0.9998 | 0.9934 | 1.0003
(0.0566) | (0.0563) | (0.0553) | (0.0555) || (0.0568) | (0.0560) | (0.0554) | (0.0554)
0.0575] | [0.0563] | [0.0551] | [0.0554] | [0.0570] | [0.0560] | [0.0552] | [0.0553]
o 0.9976 0.9976 0.9976 0.9976
(0.0528) (0.0527) (0.0528) (0.0527)
[0.0542] [0.0542] [0.0542] [0.0542]
Vs 0.8009 0.8009 0.8009 0.8009
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0560] [0.0560] [0.0560] [0.0560]
5 0.5000 0.4992 0.4998 0.4991
(0.0479) (0.0464) (0.0464) (0.0457)
[0.0498] [0.0484] [0.0478] [0.0472]
=04
) 0.2264 | 0.3998 | 0.2993 | 0.3966 | 0.3065 | 0.3997 | 0.3574 | 0.3969
(0.0899) | (0.0646) | (0.0521) | (0.0420) || (0.0687) | (0.0496) | (0.0360) | (0.0302)
0.0781] | [0.0642] | [0.0505] | [0.0423] | [0.0631] | [0.0481] | [0.0366] | [0.0296]
B 1.3050 | 1.0019 | 1.1774 | 1.0075 | 1.1658 | 1.0024 | 1.0764 | 1.0071
(0.1657) | (0.1248) | (0.1050) | (0.0902) || (0.1320) | (0.1018) | (0.0823) | (0.0746)
0.1523] | [0.1223] | [0.1052] | [0.0882] | [0.1261] | [0.0987] | [0.0831] | [0.0719]
B 0.9882 | 1.0001 | 0.9941 | 1.0006 || 0.9989 | 0.9998 | 1.0005 | 1.0008
(0.0565) | (0.0557) | (0.0554) | (0.0553) || (0.0567) | (0.0555) | (0.0556) | (0.0552)
0.0563] | [0.0556] | [0.0550] | [0.0552] | [0.0556] | [0.0553] | [0.0551] | [0.0551]
o 0.9976 0.9976 0.9976 0.9976
(0.0528) (0.0527) (0.0528) (0.0527)
[0.0542] [0.0542] [0.0542] [0.0542]
Vs 0.8009 0.8009 0.8009 0.8009
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0560] [0.0560] [0.0560] [0.0560]
5 0.4999 0.4992 0.4997 0.4994
(0.0469) (0.0459) (0.0459) (0.0455)
[0.0487] [0.0478] [0.0474] [0.0470]

Note: Observations n = 361, §; = 2 = v1 = 1, and 2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 5: Estimates from spatial weight matrices with strong endogeneity (small sample)

p=038 WS (n=49) WO(n=98)

A=02] 1V 2SIV SAR MLE v 2SIV SAR MLE
) —0.0469 | 0.2002 | 0.0152 | 0.1921 || —0.1427 | 0.1913 | —0.0345 | 0.1917
(0.2525) | (0.1309) | (0.1400) | (0.0830) || (0.2193) | (0.1021) | (0.1191) | (0.0667)
0.2206] | [0.1377] | [0.1289] | [0.0881] | [01797] | [0.1066] | [0.1066] | [0.0690]

By 1.3325 | 0.9968 | 1.2506 | 1.0092 | 1.4673 | 1.0140 | 1.3194 | 1.0133
(0.3728) | (0.2332) | (0.2352) | (0.1814) || (0.3133) | (0.1729) | (0.1880) | (0.1353)
0.3428] | [0.2340] | [0.2416] | [0.1807] | [0.2915] | [0.1779] | [0.1991] | [0.1394]

Ba 0.9436 | 0.9934 | 0.9642 | 0.9955 | 0.8974 | 0.9913 | 0.9319 | 0.9931
(0.1594) | (0.1581) | (0.1484) | (0.1515) || (0.1176) | (0.1145) | (0.1083) | (0.1104)
0.1668] | [0.1607] | [0.1564] | [0.1583] | [0.1302] | [0.1179] | [0.1169] | [0.1166]

o 1.0015 1.0028 1.0024 1.0024
(0.1427) (0.1398) (0.1015) (0.1005)
[0.1418] [0.1450] 0.1028] 0.1029]

s 0.7982 0.7983 0.7999 0.7999
(0.1542) (0.1511) (0.1104) (0.1093)
0.1582] [0.1588] [0.1149] [0.1149]

5 0.8047 0.8011 0.7985 0.7978
(0.0960) (0.0876) (0.0676) (0.0628)
0.1025] 0.0954] [0.0705] [0.0664]

X=04]| IV 2SIV SAR MLE v 2SIV SAR MLE
) 0.1543 | 0.3983 | 0.2281 | 0.3885 | 0.0636 | 0.3905 | 0.1898 | 0.3900
(0.2530) | (0.1247) | (0.1320) | (0.0765) || (0.2219) | (0.0965) | (0.1121) | (0.0611)
0.2274] | [0.1323] | [0.1278] | [0.0820] | [0.1862] | [0.1017] | [0.1066] | [0.0640]

B 1.4404 | 09998 | 1.3104 | 1.0181 | 1.6052 | 1.0194 | 1.3778 | 1.0200
(0.4826) | (0.2726) | (0.2777) | (0.1990) || (0.4105) | (0.2017) | (0.2233) | (0.1487)
0.4471] | [0.2793] | [0.2902] | [0.2013] | [0.3791] | [0.2104] | [0.2393] | [0.1547]

B 0.9603 | 0.9931 | 0.9784 | 0.9959 | 09173 | 0.9915 | 0.9501 | 0.9932
(0.1606) | (0.1570) | (0.1499) | (0.1509) || (0.1178) | (0.1130) | (0.1089) | (0.1097)
0.1654] | [0.1596] | [0.1562] | [0.1579] | [0.1285] | [0.1167] | [0.1162] | [0.1157]

o 1.0015 1.0011 1.0024 1.0024
(0.0933) (0.1398) (0.1015) (0.1005)
[0.1418] [0.1427] [0.1028] 0.1029]

s 0.7982 0.7987 0.7999 0.7998
(0.1427) (0.1510) (0.1104) (0.1093)
0.1582] [0.1587] [0.1149] [0.1150]

5 0.8044 0.8008 0.7988 0.7980
(0.1542) (0.0863) (0.0652) (0.0616)
[0.0989] [0.0934] [0.0680] [0.0651]

Note: Observations n =49 or 98, 51 = 3 =1 = 1, and 5 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 6: Estimates from spatial weight matrices with strong endogeneity (large sample)

p=038 WA (n=361) WC(n=361)

X=02] 1V 2SIV SAR MLE IV 2SIV SAR MLE
) —0.0712 | 0.2009 | 0.0047 | 0.1988 | 0.0386 | 0.2005 | 0.1039 | 0.1985
(0.0944) | (0.0453) | (0.0576) | (0.0325) || (0.0792) | (0.0383) | (0.0435) | (0.0257)
0.0765] | [0.0435] | [0.0528] | [0.0316] | [0.0697] | [0.0362] | [0.0443] | [0.0254]

B 1.3579 | 1.0005 | 1.2580 | 1.0033 | 1.2153 | 1.0011 | 1.1288 | 1.0037
(0.1340) | (0.0797) | (0.0914) | (0.0677) || (0.1174) | (0.0733) | (0.0778) | (0.0626)
(0.1231] | [0.0752] | [0.0931] | [0.0641] | [0.1111] | [0.0692] | [0.0810] | [0.0603]

B 0.9509 | 1.0011 | 0.9657 | 1.0010 || 0.9732 | 1.0009 | 0.9851 | 1.0009
(0.0562) | (0.0561) | (0.0546) | (0.0555) || (0.0571) | (0.0558) | (0.0553) | (0.0554)
0.0589] | [0.0557] | [0.0555] | [0.0553] | [0.0579] | [0.0556] | [0.0554] | [0.0553]

o 0.9991 0.9991 0.9991 0.9991
(0.0528) (0.0526) (0.0528) (0.0526)

[0.0532] [0.0532] [0.0532] [0.0532]

Vs 0.8014 0.8014 0.8014 0.8014
(0.0555) (0.0553) (0.0555) (0.0553)

[0.0562] [0.0562] [0.0562] [0.0562]

5 0.7993 0.7986 0.7992 0.7986
(0.0336) (0.0325) (0.0322) (0.0317)

[0.0339] [0.0327] [0.0322] 0.0319]

X=04]| IV 2SIV SAR MLE v 2SIV SAR MLE
) 0.1408 | 0.4006 | 0.2344 | 0.3983 || 0.2576 | 0.4002 | 0.3323 | 0.3985
(0.0929) | (0.0421) | (0.0539) | (0.0296) || (0.0720) | (0.0328) | (0.0370) | (0.0217)
0.0762] | [0.0404] | [0.0517] | [0.0290] | [0.0631] | [0.0310] | [0.0376] | [0.0217]

B 1.4552 | 1.0006 | 1.2912 | 1.0046 | 1.2516 | 1.0014 | 1.1205 | 1.0035
(0.1706) | (0.0907) | (0.1075) | (0.0738) || (0.1375) | (0.0782) | (0.0837) | (0.0649)
0.1539] | [0.0856] | [0.1104] | [0.0700] | [0.1278] | [0.0738] | [0.0858] | [0.0650]

B 0.9720 | 1.0010 | 0.9832 | 1.0010 | 0.9948 | 1.0008 | 0.9986 | 1.0007
(0.0565) | (0.0556) | (0.0551) | (0.0553) || (0.0572) | (0.0555) | (0.0556) | (0.0552)
0.0576] | [0.0553] | [0.0553] | [0.0551] | [0.0561] | [0.0552] | [0.0551] | [0.0573]

o 0.9991 0.9991 0.9991 0.9977
(0.0528) (0.0526) (0.0528) (0.0527)
[0.0532] [0.0532] [0.0532] 0.0610]

Vs 0.8014 0.8014 0.8014 0.8011
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0562] [0.0562] [0.0562] [0.0591]

5 0.7992 0.7986 0.7991 0.7985
(0.0326) (0.0320) (0.0318) (0.0315)
[0.0329] [0.0321] [0.0318] [0.0329]

Note: Observations n = 361, §; = 2 = v1 = 1, and 2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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The simulation results are summarized as follows.

1. For the biases of parameter estimators, our 2SIV and MLE estimators have very small biases in all
cases. For conventional IV and SAR estimators, the higher the degree of endogeneity is, i.e., the larger
the correlation coefficient p is, the larger the bias of estimator is. The biases for estimators of the
spatial correlation h) are, in general, much higher than those for 5. X from IV and SAR suffers severe
downward bias when p = 0.5 or 0.8, in some cases with bias exceeding 100%. The conventional IV

performs much worse than the conventional SAR.

2. For the variances of parameter estimators, we provide both the empirical standard deviation based
on 1000 replications and the mean of estimated standard error based on the asymptotic variance-
covariance matrix. From Tables 1-6, we can see that these two values are very close in all cases.
Comparing variances of estimators from different estimation methods, we can see that IV is close to
2SIV and SAR is close to MLE. It seems that estimators based on the likelihood estimation method

have smaller variances than those based on the IV methods.

3. The biases of IV and SAR estimators vary with the spatial correlation A. When true A = 0.2, X from
the IV and SAR have large biases relative to its true value than when A\ = 0.4. It seems that the

conventional methods produce even more severe bias in the situation of weak spatial correlation.

4. Comparing Table 1 to Table 2, Table 3 to Table 4, and Table 5 to Table 6, as sample size increases
while the number of neighbors for each agent grows at a slower rate, the bias and standard error of

estimators decrease.

7 Conclusion

In this paper, we consider the specification and estimation of a cross-sectional SAR model with an endogenous
spatial weight matrix. First, we specify two sets of equations: one is for the SAR outcome, and the other is for
entries of the spatial weight matrix. The source of endogeneity is the correlation between the disturbances in
the SAR outcome equation and the errors in the spatial weight entry equation. Second, under the conditional
moment assumptions on disturbances, we propose three estimation methods: 2SIV, QMLE, and GMM. We
consider two types of spatial weight matrices: one is sparse and another one has its entries decreasing
sufficiently fast as the physical distance increases. By employing the theory of asymptotic inference under
near-epoch dependence, we prove the consistency and asymptotic normality of these three estimators. In
generalized 2SIV, we also provide the optimal choice for IV matrices.

To examine the behavior of our proposed estimators in finite samples, we conduct a Monte Carlo sim-
ulation study. The simulation results indicate that the commonly used estimates under exogenous weight

matrix suffer serious downward bias when the true weight matrix is endogenous. On the other hand, our
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estimates have good finite sample properties. As sample size increases and the number of neighbors grows

more slowly, our estimates quickly converge to true parameters.

This paper focuses on estimating a cross-sectional SAR model with a specified source of endogeneity for

the spatial weight matrix. In future research, we may extend our cross-sectional model to a spatial panel

data setting where the spatial weight matrix varies over time due to changing economic conditions. Another

issue that needs future research is to consider an endogenous spatial weight matrix purely constructed with

economic distances. This could be a technical challenging issue as the near-epoch assumption may not be

met. Thus alternative large sample theorems may need to be developed.
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Appendices

A Expressions related to the statistics

A.1 First order derivatives and the expectation of the log quasi-likelihood func-

tion

The expectation of the log quasi-likelihood function in (3.4)) is

1 __ ey L 1 L
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where Hln = %E[(Gn(XlnﬂO + En(SO),Xln,XZn,En)/(Gn(XlnBO + 5n50)7X1n7X2n75n)]~

The first order derivatives are

Pl e —uiws; 0 2 = 2 x e 0)
(w = (37 @ Xg,)vee(Zy — XonT) — Ulga ® (X5,6.(0));

w = *% + 2;15”(9)/5“(@; 81%;(9) = ;gsn(e)’gn(o);
31%07(9) = —gah;('ff‘ - %%tr[Elen(F)’en(F)],

where &,(0) = S,(\)Y, — X1,8 — (Z,, — X2,1)6 and ¢,(T") = Z,, — X5,T'. As « is a J-dimensional column

vector of distinct elements in X, the J-dimensional vector 81“‘2 | has the jth element ¢r(X2 1825) and

2 tr[L7ten(I) e, (I)] has its jth element —tr (Z;lgiﬁ Z;len(F) en(T )) forj=1,...,J.

A.2 Second order derivatives and the variance-covariance matrix

The second order derivatives are

% = —tr[W,S,*(N)]* — Ulg(WnKL)’WnYn; 82;;\;:52(0) = —Ulg(WnYn)'ﬁn(G);
W _ 1§X1RW Vs W = 0155 (X5, W Yy); w —0;
ool = ey vy St - S X

m = (Tlg&@(X;nXln); W:O; W :_Ulg)qngn(r);
w - —%X{nﬁn(e);m = ®(X2nX2n)—01255’®(X§nX2n);
m B %5@()(;”@1( )) gji?f)g)) [ ®(Xén6n(F))}%jgl);
m = O%IPQ(E@(Xén&n(@)HOlgm(Xgnsn(r)); wo;
ﬁi;@—2é%&U&()%;;@—%%@@w%yig@_m
% = —O}genw)’en(ﬁ); % = —%a;glal(ff' - % aj;a,tr[zglsn(r)'gn(r)].
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9% In =, |

where Z55=<! is a J x J matrix with the (j, k)th element % = —tr(E;lgfz »t gij) and the (j, k)th
element of %;a,tr[E;lsn(F)’sn(F)] is
0? % Y. 0% o%
S e en(D)) = tr (BTN (52 51— =X == )8 e (D) en(T
otz a0 ()] = o (571 Gy G2 o et R, (1Y (D)
for 5,k =1, ..., J. Therefore,
Lo Iy Iir —E[tr(Gn)] 0 I
=X X1, 0h® (X, Xon) 0 0 0
I (32 ]nLn(90)> 1 * * Irr 0 0 0
Y Y R __n_ )
0000 o * 0 0 207, 0 0
0 0 0 0 oo 0
* 0 0 0 0 —nXe0
with
Iyvw = —O'gotT[E(Gi + GHG%)} — E[(X1n80 + En(sO)/G{,L(XlnBO + £,00)];
Lp = —X[,E(GnX1n80+ Gnendo); Iir = 00 @ [X5, E(Gn X100 + Grendo));
Iy = —E[E;Gn()ﬁnﬁo + Enéo)]; Irr = —(0202;01 + 5056) ® (XénXQn);
2
NO¢g _10%c0_10%.0 .
(Taadiy = —— tr(X5 80; >4 aaaj ) for j,k=1,...,J.
And 10 L (60) O1n L (60) 9210 L, (6)
n L, (0o n Ly (6o n Lin Vg ML
E =—E(—F0m— ) t©
( 06 06’ > < 2600/ ) %
where
Ry Rag Rar Rye 0 > E(&},einGliin)
i=1
* 0 0 # E E( ?n)xll mn 0 0
0 /= : '
OME = % « %0 —2§°§0 ZIE( 3% Rra 0
o i=
£0 n .
* * * %(u@ —30%) 0 ﬁ ; E(&,cin)
* * * * (Raa)kj 0
* * * * *
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with

Ry = ZE2§ in(X1nBo + €000)Giign + G (&1 — 300)];
Ry = ZE(ginGii,n)xll,in; RAF=—5ozn:E(§?,nGn,n)$/2,m%
=1 1=1
o = 7000 B8 S e S © lvee(Xb)
(Realiy = “S00B(E35 S5 el B ) - (52 ot (52 o
—2tr(S5 %EE" ) %i“ )i
Ry = Z{E (€0 111G (X1 Bo + no)] + El(EL,, — 30¢0)Gionl}-

5011

B Some basic properties of NED of random fields

In the following proofs, we will adopt asymptotic inference under near-epoch dependence and let ¢, = (5, &)
be the basis for NED processes. The following claims are some basic results. The first Claim is due to

the topological structure in Assumption [I} The other claims are some basic properties for NED processes.

Claim B.1 For any distance p, there are at most c5p™ points in B;(p) and at most c4p®™ =1 points in the

space B;(p+ 1)\B;(p), where ¢y and c5 are positive constants.
Claim is directly from Jenish and Prucha (2012)@

Claim B.2 For any random field T = {T; ,,i € Dy,n > 1} with ||T; 4|l, < 00, [|Tin — E(Tin|Fin ()], <
2||T; nllp with p > 1.

This result follows from the Minkowski and the conditional Jensen inequalities: ||T; ,,—E(T; »|Fin(5))|]p <
||Ti,n||p + ||E<Ti,n|]:i n ))Hp < 2||Tz n||p~

Claim B.3 If |[t1;, — E( in(S)|la < Crpi(s) and ||tein — E(tain|Fin(s))|la < Capa(s), with
max(||t1inll4, |t2inlla) < C, then ||tiintoin — E(tiintoin|Fin(s))|ls < C(Cr + C2)e(s), where p(s) =
max(p1(s), pa(s))-

10These two results are special cases of those in Jenish and Prucha (2012) where the base random field can be spatial mixing
processes. Here we have the base being i.i.d. variables for simplicity, which is sufficient for our model.
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Proof of Claim For the product of t1; 5t n,

[t1int2in — E(t1int2in] Fin(s)ll2 < [[trint2in — E(tiin] Fin(s)) E(t2inlFin(s))l2
[[t2in[t1in — E(trinl Fin ()2 + 1Etinl Fin($)) [t2in — E(t2in]Fin(s))]]|2

< Atzinlla - [trin — Etrinl Fin($)|la + [[t1inlla - [1t2i0 — E(t2in|Fin(s))ll4

< C(Crpi(s) + Capa(s)) < C(Cr + C2) max(p1(s), p2(s)).

IN

A

The third inequality follows from the Holder’s inequality. m
From Jenish and Prucha (2012), we have the following two Claims for LLN and CLT under NED.

Claim B.4 Under Assumption if the random field {T; ,,i € D,,n > 1} is L1-NED, the base {; »}’s are
i.9.d., and {T; n}’s are uniformly L, bounded for some p > 1, then %E?:l(Ti,n —ET;,) =24}

Claim B.5 Let {T;,,i € D,,n > 1} be a random field that is Ly-NED on an i.i.d. random field <. If
Assumption [1] and the following conditions are met:

(1) {T;n,i € Dyp,n > 1} is uniformly Loy s-bounded for some § > 0,

(2) inf,, Lo2 > 0 where 02 = Var(3 [, Tin),

(3) NED coefficients satisfy > oo r¥o=1p(r) < oo,

(4) NED scaling factors satisfy sup,, ;e p din < 0,

then ot S0 (T — ET; ) L\ N(0,1).

C Proofs of NED Properties for Relevant Statistics

C.1 NED properties in Case 1 under Assumption 4.1)

Claim C.1.1 Under Assumptions[], 3.1), and 4.1), sup,, ||Wy||1 < co[T]

Proof of Claim For any i, divide the whole space D into subsets B;(p + 1)\B;(p), p =

1,2,...., and B;(1). Under Assumption 4.1), 0 < w;j, < clp;jc?’do. Then wj; , < c1p~ % for any
j € Bi(p + 1)\Bi(p) with p > 1. There are at most cyp?~! points in B;(p + 1)\B;(p). Therefore,
ZjEB,;(p+1)\Bf,(p) Wiim < cac1p(t=e3)do—1 " For the special case of B;(1), as wijn, = 0, it must be p;; =1

rom Assumption (1| an ence, Wi;, < c1. oince D, C = B; U1 8:(p + i\p)), we have
fi A i 1 d h i, Si D D B;(1 f,olB D\B h

2ot Wiin = Xpm0 2o jeBi(pt )\Bi(p) Wiin < CaC1 (1 25 p(lch)drl) <ocowhencz>1.

Claim C.1.2 Under Assumptions |1}, 3.1), and 4.1), for any n and positive integer q, ||WE||l1 < (¢ —

ey Kedt + et < ge, Ked=t, where ¢, = sup,, ||[Whl|1 and ¢, = sup,, |[Wa||so-

HFor this claim, it is sufficient to have c3 > 1 in Assumption 4.1) instead of the larger c3.
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Proof of Claim Denote an index set V,, with ¢, < Z?Zl Wjin < ¢y if i €V, and Z;-lzl Wjin < Cw
if i ¢ V,,. Then Assumption 3.4.1) constrains that |V,,| < K for any n. Consider the kth column sum of W7,
ie., e/, Wileg,, where e, = (1,...,1)" and ek, is the unit column vector with one in its kth entry and zeros

in its other entries. As I,, = Y1 | €; n€l .,

n
/ q _ / . / q—1 _ / . / q—1 / . / q—1
eWiher, = E eanez)nei’an ekm—g eanez,nei’an €k + eane,mei!an €k.n
i=1 i€V, i¢ Vi
< K ! Whes A ! Whe; LoWat
= maxe, Wné;pn | | maxe; Wy egn | + | maxe, Wne;n €in¥n Ckn
i€V i€V, ¢V, v ’
3 n

< Ko [Wi oo + col W < Keydl + cu| Wi

As this inequality holds for any k = 1,...,n, we have ||[W4||; < c,Kcit + ¢, ||[W271|;. By deduction, we
have ||[Wi4||1 < (¢ — Deo Kl + et < ge, Kedl. m

Claim C.1.3 Under Assumptions[], 3.1), 8.2), and 4.1), supyep ||Gn(N)]loo < 00 and supyep [|Gn(N)|1 <

Q.

Proof of Claim As G (N) = Y2 AW H and |[[WH oo < [[Wh| 55, we have

(e e) oo
sup [|G(A)lse < Y sup AW oo < cw Y sup [Acu' < oo.
AEA s 120 AEA

From Claim [[WEHL|1 < e K(1+ 1)c,!, and hence,

sup |G (Wlls < D sup AW 1 < euK ) (14 1) sup [Aey|' < co.
A€A =0 AeA e AEA

Claim C.1.4 Suppose W is an n X n square matriz which can be decomposed into the sum of two n X n
matrices such that W = A+ B. Denote |A|max = max{|a;;| : i,j = 1,...,n}. Then for any positive integer k

and any 1,7 =1,...,n,
k—1
(W* = B")ij < |Almax Y [1BI[% - [[WF1 1.
m=0
Proof of Claim B ion, Wk — Bk = K71 gm gpyk—1-m_ in = !
. v expansion, =3 o . Denote ¢;, = (0, ...0, 1,0, ...,0)’,
which is the ith unit vector of order n, then (W* — B¥),; = an;lo el BmMAWF=1=me . For any matrix M
and vector e of dimension n, it is easy to see that || Me||oo < | M |max||€]]1. Thus, for any integer m = 0, ..., k—1,

eganAWk_l_mejn ||B/mein||1 : HAWk_l_mejnHoo < [I1B™|oo - |AWk_1_m|max
|Almas - [[B™loo - [[W*17 1.

IA

IA
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Together, we have the result. m

Claim C.1.5 For any o > 0 and s > 2, Zp:[s] p el < %5_“, where [s] denotes the largest integer less

than or equal to s.

Proof of Claim For any pg > 2,

—Q o0 o0 _ 1 — 2a —Q
p07 :/ x—(x—ldl,< Zp—a—l </ JT—a_ldl‘: (pO ) < Po )

o _ o - «
Po p=po po—1

—

The last inequality holds because pg — 1 > po/2 and hence (pg — 1)~ < 2%py*. Therefore, we can find a
p=po p~ 7t = ca1py®. Now with 1 < s/[s] < 1+ (s —
[s])/[s] < 3/2, there exists a constant 1 < cq2 < (3/2)* such that caos™® = [s]~*. Together, we have
2 p=s] PO = CarCa2sT < (3%/a)s™. m

positive constant 1/a < c¢q1 < 2%/ such that >

Claim C.1.6 Lett;,(m) be the ith element of the vector W,'sra, where ¢}, = fi(Si.n, Xn) with ¢, = (€n,&n)
is a vector-valued function and a is any conformable vector of constants. Under Assumptions|i], 3.1), and
4.1), suppose sup; ,, |7, |lp < 00, then sup; , [[tin(m)]], < Mm@ 2cpCop and

sup; ,, [[tin(m) — E(tin(m)|Fin(s))llp < Copcmmtesdos(2=ca)do yyith C,, being a finite constant.

Proof of Claim First we show that [|; ,,(m) — E(tin(m)|Fin(s))]]p < Capcmm3tesdog(2=ca)do for
any ¢ and n. Note that for any integer 1 < k < m and i ¢ B;(s), we can show that

(WHi, < Com°3d0+2c5p;£3d° and Z (Wi, < Crekmesdot2g(1=ca)do (C.1)
ik EBi(s)

with Cy and C; being positive constants, not depend on k. To show this, we construct two matrices A,
and B, as follows: a;jn = wijnl(wijn < c1(piz, /m)~¢%) and bijn = wijnl(Wijn > c1(pii, /m) %), then
W, = A, + B, and a;j,bijn = 0. As i, ¢ B;(s), at least one of the items wii, n, Wijisms- " s Wi _yig,ns
say wi,_,i,n, satisfies that w;,_ 5, n < c1(pii, Jk) ™% < e1(pis, /m) =% because there exist at least two
neighboring nodes in the chain ¢ — 43 — --- — i such that their distance is at least p;;, /k. Hence,

(BF)ii, = Zil o 'Ei(k,l) Wiy nWiyigm * wi(k_l)%nl(all w’s> ¢ (pi,, /m) %) = 0, and we have

k-1
Wi = (W = BRiiy, < [Aulmax ) 1Bal L IWE 77l < ey (P yeado S e (k= 1 — ) Keycly 172

iige
m
0

el
I
—

q=0

—c3dop 1.2 k—2 c3do+2 k —csd
Keyer(pii, /m)” %k ey = < Com®S™ ™ ey pi; 0,

IN
=)
Il
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where the first inequality is from Claim the second one is from Claim and all elements in A,

are < c1(pis,, /m)~%. And hence, for any i,

oo
S (W < Como e S o < Comesio 2y 32 pshe < Gl e 240,
in g Bi(s) in g Bi(s) p=[s]

The last inequality is from Claim

Any chain of W starting from ¢ in ¢; ,,(m) involves m steps. We can divide these chains into two sets:
one set has all its paths staying within B;(s), and the other set has some paths falling outside of B;(s). For
the first set with all nodes in B;(s), obviously ¢; ,(m) — E(t; n(m)|F; n(s)) = 0. For the second set, divide
it into m mutually exclusive subsets:

(i) Zimgsi(s)(Wﬁn)iimgfm,n%

(i) Eim,lgBi(s) > imeB, (s)(Wm i1 Wi VimnSi, @ €te.

Such subset can be writtenas >, op ) 2o L ieBi(s) " DoimeBi(s) W8 i Wi it ** Wiy nSi
for k=0,..m—1.

Consider (i): As

LY WMinsional <Y (Wi lsh, nal < D fsfh, ualCome ot presdo,
im&Bi(s) im&DBi(s) im&DBi(s)
we have
oo
1Y Wi mally < copCom™ 26 3 epl=)o=) < Cocmev*26s0=9%,(C.2)
im&Bi(s) p=l[s]

where cqp, = (E|i,, na|?)'/? for any i,, and n. For (ii),

| Wm 1 zz Ww; 7 n| < ||W ||oo (Wmil)ii _ S Cmm03d0+25(1763)d0017
m—1"lm—1tm, n m—1 w
tm—1¢Bi(s) im€B;(s) im—1¢Bi(s)

and hence,

m— 1 cado+2 (1—c3)d
|| E § W um 1 Wiy, 1zm,n§zm naHP < Cregym® s(1mea)do E Cap
im—1¢Bi(s) im€Bi(s) tm €B;(s)

< Cpemmesdot2g=ca)dog gdoe < Cuemmesdot2g(2=ca)doe g (CT).

33



And similarly, for subset (k) with i, ¢ B;(s) where 1 <k <m — 1, we have

> S D W ki Wi s Wi i <A Wllloe > (W )i,

ik &Bi(8) im—k11€Bi () im €B;(s) im—k&Bi(s)

ado+2 (1—c3)d k k
< (mmesdot2gl=ca)do pecause ||[WF||o < .
Hence,

m—ky . . . . * m, cado+2 .(2—c3)do
|| Z Z T § : (Wn )'”m—kwlm,—kim,—ki»l T wlm—ltm,ngim,na”p < Czeyym S Cap-
im—k&Bi(8) im_k11€Bi(s) im €Bi(s)

These together imply

[|1tin(m) — E(t;n(m)|Fin(s))|lp < 2||summation of paths in ¢; ,,(m) with at least one node i,,—r ¢ B;(s)||p
m—1
<9 <02m03d0+20m8(1—03)docap + 03 Z Cmmcsdo+28(2—03)docap> < cmm03do+38(2—03)docap
iy w w — Yw :
k=1

To conclude, for any integer m, ||t; n(m) — E(tin(m)|Fin(s)|lp < Capemm3tesdop(s) with p(s) = s(27es)do,
Now we show ||t;.,(m)|[, < €fCqp1. Divide the whole space D into exclusive subsets B;(1) and B;(p +
1\B;i(p), p = 1,2, . Consider the case with i,, € B;(p+ 1)\B;(p). For each p > 1, from equation (C.2),
we have
I > (Wit @l < Cocapmee@F2e pli=co)b,
im €B; (p+1)\Bi(p)

For B;(1), there are two cases: iy, =i and i,, # i. For the case i,, = i, we have ||(W}")iic} ,allp < capey) . For

the case 4., # i, it must be p;; =1 from Assumption Hence, |32, .. —1(Wi")ii,. St nallp < capescy).
Since
o0
tin(m) = enWiiera =" > Wi iinSt @+ Y (Wi, sh,
p=1im€B;i(p+1)\Bi(p) im€Bi(1)
we have
oo
ltin(m)ll, < DI > Wi iimsimllp + 11D (Wiiish, nally
p=1 imeBi(p-&-l)\Bi(l)) im€Bi(1)
o0
< CQCameSdO+2CZJL Z p(lch)do + CapC5Cyy + CpCap < m63d0+2cgcap'
p=1
[

Claim C.1.7 Let g; n(m) = € G (N)sya, where < and a are the same as Claim , Under Assump-
tions [1, 3.1), and 4.1), suppose sup; , ||s},llp < oo, then sup; , [lgin(m)llp < oo and sup, , ||gin(m) —
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E(gi.n(m)|Fin(s)lp < Capms?=)% with Copm being a finite constant.

Proof of Claim Suppose |z| < 1, taking the (m —1)th order derivative on both sides of (1—xz)~! =
S reoxk, we have (1 —2)™™(m — 1)l = Y02 k(k— 1) (k —m + 2)2k=(m=D_ Hence, G™(\) =
(I, — AW,,) "W = S0 CFFm I W™ swhere CJ7™ ! is a binomial coefficient, and by using the
results for ¢; ,(I +m) in Claim we have

[1gin(m)|]p < Z(l +m— 1)m_1|)“l||ti,n(l +m)|lp < iy Cap Z(l + m)m+03d0+1|)‘cw|l <0

=0 =0
and
oo
1gin(m) = E(gin(m)|Fin()lly < D (+m—=1)"" A [tin(l +m) = E(tin(m)| Fin(s)|lp
=0
< Cap Z |)\‘lcij-m<l + m>m+2+c;3d05(2—03)d0 < Capm8(2_63)do.
=0
| |

C.2 NED properties in Case 2 under Assumption 4.2)
Claim C.2.1 Under Assumptions 3.1), and 4.2), for any positive integer q, sup,, ||W2||1 < c%cspdo.
Proof of Claim Consider the kth column sum of W4, as all elements in W,, are non-negative,
n n
enWieg n = Ze;Wg_lei’neg,anekm <|WeE | - Ze’i’anek,n.
i=1 i=1

Under Assumption 4.2), w;;,, = 0if j & Bi(pc), so i, e nWnekn = ZieBk(pc) Wik < cyespd. Hence,
et Wiep n < clespdo. As “<” holds for any k and n, we have sup,, ||[W2||1 < cLcspd. m

Claim C.2.2 Under Assumptions(l, 3.1), 3.2), and 4.2), supycp ||Gn(A)|los < 00 and supyep ||Gn(N)]1 <

Q.

Proof of Claim As Gp(N) = 32 AW and supycp [Acw| < 1, we have supycp ||Gn(V)]]oo <
Yo supren Wi oo < cw 32720 supyen [Acw|' < o0. By Claim on [|[Wyls,

oo o0
sup |G (A1 < Y sup AW < cwespl D sup [Acy|' < oo,
AEA =0 AEA =0 AEA
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Claim C.2.3 If the i, jth element of W] is not zero, then p;; < mpe.

Proof of Claim The i, jth element of Wi is Y2, D7 37 Wiiy nWiyiy,n " Wiy, _yjn- 1 it is
not zero, then there exists at least one path ¢ — i1 — - - -4,,_1 — j such that all w;;, n, Wirism, - Wiy _1jn
are positive. As w;;, = 0if j ¢ B;(pc), it must be i1 € B;(p.), i2 € By, (pe),---, J € Bi,,_,(pc). Therefore,
Pij < Piiy T Pivia oo Pi_1j S MpPe. W

Claim C.2.4 For any positive integer p and 0 < q¢ < 1, if s > p/(—1Inq) + 1, then there exists a finite

constant ¢ such that le[s] IPqt < csPq®, where [s] denotes the largest integer less than or equal to s.

Proof of Claim Let f(x) = 2P¢%, then fP~l¢*(p + xlnqg) < 0 if z > p/(—1Ing). As s >

(o] Spqs p o0
Zl”ql < / 2Pq*dr = — - 2P Lg% dr < ¢osPq®,
— R Ing Ing/,
where cg is a constant. The first inequality holds because the sequence [P¢' is monotonically decreasing
when [ > p/(—1Ing). The equality is from integration by parts, and the last inequality is from induction for
f:o x"¢®dx for r = 0,1, ...p. Therefore, Zl:[s] Pgt <> . 1 1Pqt <co(s —1)Pg*~ ! < csPg®. m

Claim C.2.5 Let t; n(m) = e, W'sra, where ¢ and a are the same as Claim . Under Assumptions
8.1) and 4.2), suppose sup;,, ||/, |lp < 00, then sup,,, [[tin(m)|[, < Copm@cy and sup;,, |[ti(m) —
E(t; n(m)|Fin())lp < Caprp(s) with Cqp and Copr being positive constants; p(s) = 1 if s < mp. and
©(s) =0 if s > mp,.

Proof of Claim From Claim e nWillekn = 0if k ¢ Bi(mp,.). Therefore,

tin(m)| =1 el Wileknelnsnal =1 Y € Wilerne) nsnal < max [e; , Wil e. o] > lsiaal
k keB;(mp.) ’ kEB;(mpc)
and hence,
tnm)lly < D Il aally < clies(mp)™cap = Capclim®,
keB;(mp.)

where ¢, = sup; , [|5,,all, and Cop = capesplo.

Next, we show the NED property. For the spatial weight matrix without row-normalization, w;;, is a
function of ¢; , and g ,,, and w;;,, = 0 if j ¢ B;(p.). For the row-normalized case, w;;,, may be related to
many points in B;(p.) and in general is a function of ¢’s at those locations. In both cases, all the locations
of nodes in the chains of e;7nWTT related to ¢;,(m) are within the ball B;(mp.). Hence, when s > mp,,
tin(m) — E(t;n(m)|Fin(s)) =0. With s < mp,,

1ti,n () = B(tsn(m)|Fin(s)llp < 2lltin(m)|]p < 2Capciym®.
Therefore, the NED property follows if we choose ¢(s) = 1 for s < mp. and ¢(s) =0 for s > mp.. =
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Claim C.2.6 Denote g;n(m) = €;,G'(N)sia, where ¢ and a are the same as Claim [C.1.6, Under As-
sumptions 3.1), and 4.2), suppose sup;, ,, ||s7',, ||, < o0, then sup; , ||gin(m)||, < 0o and sup; , ||gin(m) —
E(gin(m)|Fin()lp < Capm(s) with Copm being a finite constant; ¢(s) = 1 if s < mp. and ¢(s) =
stotm=1| e, [3/Pc if s > mp,..

Proof of Claim From the proof of Claim Gin(m) = 302, CH™ I\, (1 +m). TE A =0,
then g; ,(m) = t; ,(m) and the Claim follows from Claim For A # 0, by Claim for any ¢ and n,

o
Hgl,n(m)”p S CZ)L ap Z ‘)\Cw|l(l + m)doerfl,
=0

which is finite and denoted as Cy,. Thus, for s > 0, ||gin(Mm) — E(gi.n(m)|Fin()lp < 2]|gin(m)|]p < 2C,.
Now consider the case when s > mp.. Given such an s, from Claim tin(Mm+D)—E(t; n(m+1)|Fin(s)) =

0 for any nonnegative integer [ such that s > (m +1)pc. Such a set of [ will be determined by | < (3> —m).
Therefore, when s > mp,
||gi,n(m> - E(gz,n(m”]:l,n(s))up = || Z Clleril)‘l [ti,n(l + m) - E(tz,n(l + m)|]:z,n(s))]”10
l:[i—m]
< 2 Z I+ m)m_lp‘llHti,n(l +m)||p < 2Capcy Z |)‘cw|l(l + m)m_1+dov
I=[= —m] =[5 —ml

where the last inequality follows from Claim By the inequality in Claim as s/p. > m, we have

ST el my A =3 e [ A = O™ ey ),

=[5z —-ml I=[=]

The Claim would follow if we set ¢(s) = 1 if s < mp. and @(s) = st X, |*/Pe if s > mp.. ™

C.3 Proofs of main results

Proof of Proposition As M,, = Al B, if we denote a’c}'M,¢'b = Y7 | ¢; n, then ¢;,, = a},b}

inVin
where af,, = €; ,Ansya and b}, = €; ,BnG;b can be either tin(ma) or g;n(mg) for any finite integers my
and mg. Under Assumption 4.1), Claims andgive us |ginllpr2 < llaj,llp 1165, 1l < oo and
l|gin — ElginlFin(s)l]l2 < Cpps?=€3)do  with C,, being a finite constant. Under Assumption 4.2) Claims
and [B3] give w5 [lginllyyz < 1o/l - 165,]lp < 00 and llgsn — BlasalFinls)llls < Cop(s)
with ¢(s) = 1if s < s,, and @(s) = stm=1\c, |3/ if s > s, where C,, and s,, are some finite
constants. For both cases of W,,, conditions in Claim are satisfied. Therefore, 1 E|a’c}' M,c:b| = O(1)
and L[a/ct Myucib — E(a'c Mysib)] = 0p(1). m
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Proof of Corollary We have L[a/cx(0) G (N) GI2(N)sh(0)b — E(d/s;(0)Gm (A)' G2 (NS (0)b)] =
op(1) pointwisely for any 6 from Proposition As 0 enters ¢ (0) polynomially and the parameter space of 6 is
compact, to show the ULLN, we only need to show the stochastic equicontinuity of La’c¥'Gm1(X)' G2 (N)grb.
By the mean value theorem,

la'¢;/ G (A1) G2 ()\1)<;§b —d'}' G (M) G (A2)nbl = [(M — A2)ad’s) An (N,
At — Dol (d/s7/sta)? (B'sy An (3 An(N)sib) ® < M — Ao (@/s/a)? (0's2's2b)? [ftmas(An

1/2
A1 = Xof (a's)'sza) ' (Bsrsin) <sup |A;<A>Ano>||m) :
AEA

IN

IN

where X is between \; and A2, A, (\) = G (N) [m2Gr(X) + miGM () ]G™2(N), and fimax(+) is the largest
eigenvalue of the matrix inside. The first inequality is from the Cauchy—Schwarz inequality, the second

inequality holds as A, (M)A, ()\) is non-negative definite, and the last inequality is from the spectral ra-

dius theorem. From Claims [C.1.3| and [C.2.2] supycp [|Gn(N)||o < 00 and supycp [|Gn(N)|[1 < o0, so
supyen |[An (M)A (N)|[oo < 00. As Ld/¢¥cra = O,(1) and L10/¢¥¢ib = O,(1), we have

sup |a G (MG (M)pb — d' G (X)) G2 (A2)sib| = Op(87%).
[Ar—Xz|<s* T

Then the ULLN follows. m

Proof of Proposition Similarly to the proof of Proposition (1} denote ac;'M;,c b; = S din(d),
then r; , = Z;nzl ¢in(j). Each ¢;n(j) is Lo-NED on the i.i.d. random field ¢ = (¢,&) with a finite NED
scaling factor. It is straightforward to show ||r; ,||24+s. < co. For the case in Assumption 4.1), Claims
andgive the same NED coefficient ¢(s) = s(27¢) for each g; ,,(j). Therefore, by Claim the NED
coefficient for 7; ,, is also p(s) = s27@)do. Ag ¢z > 3, 30 rdo—lp(r) = 3000 pB-es)do—l < oo, For the
case in Assumption 4.2), Claims and give the NED coefficient ¢(s) = s®tm=1|\¢,, |3/Pe if
s > Tp,, otherwise, ¢(s) = 1, where 7 is the highest power of G™ in M;,’s. Therefore, > o0  rdo=1y(r) =
SomPe pdo—1 4§70 Fpetl rdotm=1\c, |"/Pe < oo, All the four conditions in Claimare satisfied and hence,

n/o'Rn S N(0,1). m

Proof of Theorem Under Assumptions by applying Proposition R—ko = alimy,_eo %E(Q;fn)—i—
L B(X%,end0), where

blimy, o0 o

(H/[ lim E(Q/ Qn )] lHq> H/[ lim E(Ql Qn )] and b= ¢ lim E(Q”rLXQ’n)( lim XénXQn

n— 00 n— 00 n—00 n n—00 n

)—1
with Hy = lim L[B(Q},Gn) X1n o+ B(Q)Gren)do, B(Q)) Xins E(Qpen)): As E(Q),6,) = 0 and E(X3,5,) =

0, we have % — kg — 0. Under given assumptions, since k — kg can be written as a form of R,, in Proposition
V(R — ko) <4 N(0,%;y). Similarly, we can show /n(Rg — ko) LN N(0,YX¢grv). =
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Proof of Theorem Let Kpgrv be the best G2SIV estimator with the corresponding optimal IV
matrix Q* = [GnXin,GnZn, Xn, Zs]. As vV/n(Eparv — ko) LS N(0,YXpgrv) from Theorem to show
Vn(RrBarv — ko) < N(0,Xpagrv), it is sufficient to show \/>(/<‘3FBGIV — Rpaerv) = 0p(1). Denote C/Q\; =

N N & 0200 /o'
(G X1 Ga(N) Zny Xy Zal, w0 = Z5=sis, and 0 = 2. Then

Rrparv — ko = [(WaYn, Xin, PEZ,) Q5 (Q L Q) L QAT Y (W, Yo, Xin, PEZ,)]) 7!
(W Ynyxlnpr_Z ) ﬁ @;(@Z,ﬁﬁléj;)il@*ln (fn + P7L5n50)

We will show L (Q¥TI, ' Qr —Q/ 11,1 QE) = 0,(1), L[QETL (W, Yo, Xiny PEZ,)— QL (Wy Yoy X, P Z,)] =
0p(1), and WQ:;’HH (&n + Prendo) — WQZ’H#({” + Ppendo) = 0p(1). As

3=

AxITT—1 A% *ITT— * 1 1 A*! Ak 1 */ ok 1 ~ A Ak * *
(QnIHlen - Qn/Hlen> = g (aﬂQn/Qn - O_QQn/Qn> - ﬁ (UQn/PnQn - vOQn,PnQn> 3
3 €0

we can show each part is 0,(1). From the proof of Corollary sup, H%@Z’@ZH = Op(1) and sup, nHQ*’ Qr —
QL Q| = 0p(1), s0

1 1 ! Ak 1 */ )% o i,i l/\*l/\* 1 */ ot */

With same arguments, 1 (@@;“L’Pn@; — ’UQQ;';/PnQ;> = 0p(1). Together, we have 1 (Q*'H 1Q* QIIQr) =
0p(1). Similarly, we can show %[@Z’ﬁ;l(WnYn,Xln,PﬁZn) — QLY (WY, X1, P Z,)] = 0,(1). Tt te-
mains to show ﬁ@;’ﬁ;l(gn + Pnendpy) — \}Q*’H_l(fn + Phendy) = op(l). From Propositions and
and Corollary \/ﬁ(ﬁ% - %) = 0p(1), nQ*'(fn + Phendo) = op(1), Q*’({n + Phendo) = Op(1), and
ﬁ(@:} — Q%) (&n + Prendo) = 0p(1) as initial estimates are y/n-consistent, so

Q3 (&n + Puendo) — (& + Pagndo) = 0p(1).

\Pz IZQ

Slmllaﬂy, UOQ*IP (fn + P 57150) naé;ilpn(gn + PnEn(SO) = Op(l)' As Hgl = %go‘[n - UOPna

1 ~, =~ 1
%Qynvjl(gn + Pn5n60) - ﬁQz/Hr_Ll(gn + Pn€n50) = 010(1)-

These together complete the proof /n(RKrparv — Rparv) = op(1). B

Claim C.3.1 Under Assumptions and@ 0y is the unique maximizer of lim %Eln L,(9).
n—oo
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Proof of Claim We want to show lim, e 2[E (In L,,(6)) — E (In L, (6))] < 0 and the equality
holds iff 8 = 0. From Section A.1, we have

L _ 108 1% N0 N Ty Sy
ﬁ[E (lnLn(e)) - E(lnLn(HO))] - _2 In Jgo 1 |250| + E(l |S | ) QtT(ZaO Ea 1260 Ipz)
- % ; i (Do = T)EZH(To — T)'wa i + % - 225005 Eltr(S, Y Su(N)Sn(A\) S, )]
213 (Ao = A), (Bo = B)', (T =T0)d)", (d0 — 8)") H1n((Ao — A), (Bo — B)', (T' = T0)d)’", (d0 — 0)")’
= %[tr(zwz 1512 — I [SPSC el — po] — % ;mé,m(f‘o — )37 (To — T/ wa,im
- 2%(0\0 =), (Bo = B), (T' = T0)d)’, (30 — 6)") Hin((Ao — A), (Bo — B)', ((T' = T0)d)’, (60 — 0)")’
1 g / - 2 / -
— 5. E |t (25 V8. (\)'S, ()\)Sn1> In -2 0818, (NS (V)8 n] (C.3)

First we show 1[E (InL,(0)) — E (In L,,(fp))] < 0. By the concavity of Inz, for any 2 > 0, the function
f(@)=2—Inxz—1 > 0 and it is minimized only at = 1. Also for any positive definite real value matrix M,
JM)=tr(M)—In|M|—m=3",(¢; —Inp; — 1) > 0 and is minimized only at M = I,,,, where m is the
dimension of M and ¢}s (i = 1,...m) are eigenvalues of M. Therefore, 2[E (In L, (#)) — E (In L, (6,))] < 0
Now we show that lim %[ (InL,(0)) — E(lnL,(0))] = 0 implies § = 6y. All the four terms in

1) are zero. Since f( 1/2 12%2) = 0, it must be ¥, = ¥.9. As hm L X}, Xa, is p.d., it must
be T'g = I". The third and fourth terms imply lim ((Ao — A), (8o — B)’, ((I‘ I'o)d), (60 — 6))Hin = 0
n— oo

and "fos V8, (NS, (N\)S; ! = I, with probability one. With Ty = T, lim,_,00((Xo — A), (8o — B)’, (I —
To)d), (60 —0)YHy, = 0 is equivalent to (Ao —A), (8o — B8)’, (6o — 6)')H,, = 0, where H,, = %E[(Gn(Xlnﬂo +
€n00), X1n,en) (Gn(X1nBo + €1n00), Xin, en)]-

Under Assumption @(a) that H,, is p.d., we have \g = A\, By = [, and §y = §. Under Assumption |§|(b)7
as Sp(A\)'Sp(N) is linearly independent of S!S, with probability one, i.e., for any A # Ay, no value of ag can
make the equality 0505 1S, (NS, (NS, 1 = I, hold with probability one., then, it must be A = Ao and
UE = 050 Since nh_{glo nXinXm is p.d., the third term being zero implies = 5y and 6 = §p. =

Claim C.3.2 Under Assumptions[1}[3, and[6 the information matriz Iy, is positive definite.

Proof of Claim |C.3.2, The Iy, = — lim E (lw). Since X,, is made of all distinct column

i B w9000

vectors of X1, and X, we can write X1,,89 = Xnﬁar and X9, = XnI‘g, where some elements in S and

vt are zero. To show Iy, is p.d., it is sufficient to show that I;; is p.d., where I;; is the information matrix

for L,,(07) and 07 = (X, B, vec(T'T), Ug, o', 4') without constraints on some elements of 3 and I'j” being
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zero. Let Cr = (cq1, ¢y, vec(ers)', cra, ¢5, ) be a (k + kpa + J + p2 + 2) dimensional column vector of
constants, where ¢;; and cj4 are constants; cro, ¢, and crg are column vectors of dimension &, J, and po;
c3 is a k X py matrix. To prove Ig,; is p.d., it is sufficient to show that the C; = 0 is the only solution to

Igro C; = 0. From the second row block of the linear equation system I, é; Cr =0, we have

1
lim —[—cn X, E(GnX0nBd + Grendo) — X, Xncrz + (6, @ (X, X,,))vec(ers)] = 0.

n—oo N,

From the third row block, we have

1
lim —[cr1(dp @ X)) E(GnX,B0 + Gnendo) + (00 @ (X, X))cra — ((U?OE;} +0004) @ (X X,))vec(ers)] = 0.

n—o0o M

By cancelling out nh_)rréo L X! Xncr2 in above two equations, we have nh_}rrolo %(Eg()l@(X;Xn))vec(cm)agO =0. As
lim X2X js p.d., it follows that ¢;3 = 0. Now with czg = 0, ¢ra = —cr1 (limp, oo 2222) "L lim,, o, L[X/ B(G, X, 85 +

n
n—oo

Grendp)]. From the fourth row block, we have cry = 20?0 lim %E[—c;ltr(Gn)]. From the fifth row block,
n—oo

we have c;5 = 0. From the sixth row block, we have cjg = 70112;01 lim %E[EQLGH(Xlnﬂg + €,00)]. From
n— oo

the first row block, we have

1
0 = lim ~{—cn [2tr[B(G} + GuGl)] + EIXuff + Guendo)' CnGra(XoBT + CGuzado)]

—Co X! E(GnXnBd + Grendo) + vec(ers)'[00 @ X, E(GnXnBd + Gnendo)] — craEltr(G)]
—Cr6E(en,Gr(Xn By +€ndo))}-

Plugging in cjo, ..., ¢j¢ from the above, we have

1 1 tr(Gn)\ 2
0 = —cp lim —[otr[E(G] + GG, — lim an(H;HnHzcnago( im E ( )>
n—oo M n—roo n n

—00 n

: 1 ’ ’ —1 7 . el Hy ! _1 . el Hy,
+cny lim —E(H, )X, (X, X,,) " X, E(H,) +c1 | lim F Y5 | im E2— |,
n n—oo

n—00 n n—o00 n

where H,, = G, (XnBf +en60) = Gn(X1nB0+endo). By Cauchy—Schwarz inequality, F(H!, H,,)—E(H!)E(H,) >
LE(He,)S E(e), Hy,). Hence,

E(H, H,) - E(H;Len)zs_olE(glan) - E(H'I/L)Xn(X;’LX7L)71X':LE(H71)

S|

> E(H,)E(Hy) — E(H,)[Xn (X}, X0) " X0 E(Hy) = E(H,) (L, — X (X7, X0) T XL E(H,) > 0.

n

As E[tr(G? +G,G")] —%EQ [tr(G,)] > E[tT(G?L+GnG',L—%tT2(Gn)] = s E[tr(Gn+ G, —2tr(Gp) I, /n)?] > 0
by Assumption |6 b) and lim %E(H,’L)[In — X, (X! X,,)"'X/]E(H,) is p.d. by Assumption |§| a), it follows
n— oo

that ¢;; = 0, and therefore cjs, ¢4, and cjg are all zeros. m
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Proof of Theorem First we check two conditions for consistency of the QMLE in two steps.

Step 1: Uniform convergence of the log quasi-likelihood function. All terms in the log quasi-likelihood
function in Appendix A.1 can be expressed in the general terms M, in Proposition[I] the pointwise conver-
gence is straightforward. Since all parameters are bounded and they enter the log quasi-likelihood function
polynomially except for the term In|S), ()|, we only need to show the stochastic equicontinuity of  In|S,, (\)]

to have the uniform convergence. Applying the mean value theorem,

1 1 _
ﬁ(ln |Sn(A1)] — 1n|Sn()\2)|)’ = ’(/\2 — Al)ntr(Gn(x\))‘ <A — M| C, (C.4)
where ) is between A\; and Mo and C is a constant not depending on n. The inequality is implied by
supy, [|Gn(A)||so < co. From this, we have supyee | L In L, (0) — E[2 In L, (8)]| 5 0.
Step 2: Uniform equicontinuity of lim F (% In Ln(9)). By inequality in 1' variance parameters being
n—oQ
bounded away from zero in compact parameter spaces, and earlier result %E [s¥ M| = O(1), we have that

E(:InL,(0)) is uniformly equicontinuous in § € ©.

As 0 is the unique maximizer of 1i_>m E[% In L, (0)] from Claim |C.3.1} these together imply RS 0.

Next we show the asymptotic normality of 0. The second derivatives in Appendix A.3 can be written in the

oec

2 2
general form in Corollary so we have the uniform convergence that sup % H 9 g{;sg/(e) —F ( 9 lgégg,(‘g))) H LN
e
0. Applying the CLT in Proposition [2[to - OlnLn(60) i Appendix A.2, we have

vn 00

1821nLn(0)> 1 9L (fo) {E <1azlnLn(90)>}‘ 1 oL@, )

\/5(900)<n 9000’ Jn 00 n_ 0000 NL

4N (0, < lim 1E(82111L"(9°))>_ lim 1E(alnL"(eO)alnL"(e(’))<1im IE(M)>_ )

n—oo 1 0000’ n—oo 1 00 00’ n—oo 11 0000’

]

Proof of Theorem As £,(09) = (Mg — NG (X1nBo + €nd0) + X1n(Bo — B) — Xon(To — 1) + £,,(60 —
8) 4+ [In — (A = M) Gr)én, we have &,(0%) = M,,;b1 (05 — 09) + X2, (Lo — T')(3g — ) + &, where ¢ and M,
are expressed as in Propositions [I] and [2l Therefore

1 .1 . 1
~€,(09)Qn 5 (05 —0°)' lim ~E(V,6;/M;,Qn) + [(To = T)(% — )] lim_ ~ X3, Q.

For Pjn = Mjn - %tT(Mjn)Inv

E(09)Pntn(09) = (0§ — 0°)Vycy M), Pjp Myusiby (05 — 0) 4+ 2(65 — 0°)'by63 M), Pjn + €, Pjnkan
+[(To = T) (60 — 6)]' X3, Pjn[Xon(T'o — ) (80 — 6) + Myusib1 (65 — 6°) + &l.
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P,

Propositionimplies that &, Pjné, — Jim LB M;n&,) — Jim. Lir(E(M;,,)] Jim LE(g,&) = 0 and
L M Py Mysr: 2 lim %E(g;;’Mr’LMjnMn n) — lim Ltr[E(M; )] hm LB ’M’ Mngr’;) Therefore,
n— oo n—00

1 1 (G p. G G/ 1 LA VETA VS . 1 ®/ 0wl 1
—En(07) Pjn&n (0 ) % 265 — 69)') Jim B (e My Myn€n) — lim =B (¢, M'€n) lim —E(M;n)

+(05 — 0)'by <nlggo B My My Myy) — N —B(e My M) lim —trE( m)) b1(05 — 6%)

(Do = T) (3 — ) (hm X3, (P Xan ) (T = D)(6 — )

n—oo n

+[(To —T)(dp — 8)]'[ lim E(XQRM]”Mngn) - hm —trE( ]n) hm E(XQnMngT’;)}bl(Hg —0%).

n—o00 M

From these moments, we see 1g,(0%) = % g(0%) with g(0§) = 0. As all parameters in ¢ enter g,(6%)

polynomially, pointwise convergence gives the uniform convergence that supyc - ||angn (0%) — ang(6“ || =0
With the identification conditions from Assumption |7} l the consistency of GMM 9G follows.

For the asymptotic distribution of 9 , by Taylor’s expansion of g"éc )q! angn(GG) =0 at 0

N -1 ~
Y 1 ag’:L 97? 1 8gn n 1 6.9;1 07? 1
\/ﬁ(ﬂg - 0(?) = <n ae(G )a';bann ae(G ) nae(c:)a;z\/ﬁangn(eg)a

A+ A’ as the sum of A and its transpose, then

where 0, is between 65 and 0§. Denote A® =

® [gé(aG)PlsnX%] gé(aG)Plsn(Zn - X2nr)

—6(09) P, WY, =&, (09) P, X1 ¢

10g,(0°) 1 : : :
w000 | GO P WY = (09) Py Xy~ @ [§,(09) P Xan]  &,(09) P (Zn — Xanl)
_Q;WnYn _Q{nXln 6/ ® (Q;Xz’ﬂ) _Q{H(Zn - X2nr>
0 0 —I,, ® (X! X5, 0

0. Thus \/n(66—6§) = — (D.,al,a,Dy,) " D, a!, = angn (05)+

It is easy to check supge = 8959(9G) (8%(965 ))
0p(1). As fgn(eo ) involves WX,/LEW ﬁ@lnfm and

L, tr(Mjn) _ L / E[tr(Mjn)]
\/»g jnén — ﬁgngn " \/»f jnén — \/ﬁfnfn n + Op(1)7

the asymptotic distribution of \/ﬁ(gff —05) is of the form of R,, in Proposition [2 Under Assumptions
and \/ﬁ(é\g — 9(?) g N(O, EGM]V[)-
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Now we give the expressions of D,, and Q(6§).

1 (g (65))

Pr= i = e
gix 0 0 0
= lim G 0 0 0 , (C5)
TEIQLGn(Xanfo + endo)]  B(PRn) —0 @ B(P272) B(7)
0 0 I, ® (Xa2em) 0

n— oo n—oo

where gjy = 050 ( hm E[tr(MS G,)] — lim 1E[tr(MS )] lim LE[tr(G, )}) for j =1,...,m, because

E'ILP_]S’HW Y = 7571 in nfn + gn in (Xlnﬂo +5n§0)]

1 1
P gim L¢P 50 G = Tim_ fggM?nGngnf lim —tr(M;,) =&, Gnén
N n

n—,oo N

= 050 ( hm E’[tr(M5 G,)] — lim E’[tr(M5 )] lim 1E[tr(Gn)]>.

n—oo M n—oo N

For the variance,

Qll ce le Z;L:l E[(éinpln(la Z)Qz,n} 0
Qo1+ Qo 0, BUE, Pon(i,0) Qs ] 0
1| : : :
Q(GG) _ Var(gn(gG)) — lim = : : . . s
0 U s g Q. E[(&}, Prn (i,7)Qi. ] 0
0 R 0 UgoQ;an 0

(C.6)
where Qji, = Var(&), Pinén&), Pnén) = Yoieq El(&}, — 302)) Pin(i,1) Prn (i, )] + ogotr(PynPy,) for j,k =
1,....m. =
Proof of Claim [1} As &, = 5,(\)Y,, — X1,8 — (Zn — X2nT)d = & + X, (T — T')(do — 9), where

~

& = Sa(NYn— X108 — (Zy — X2uD)do + €4(0 — )
= (Mo = N)Gn(X1nBo + €n00) + X1 (B0 — B) — Xon(To — D)o + £0(80 — ) — (X — Ao)Gnén + &n,

we can express 75*’ {* in the following form as in Proposmon I so that:

~ ~ 1 ~ 1 ~ 1
&6 = (00 — 0) —a163 Myusiby (6 — 0) + —assy Mpsiba(60 — 0) + —&,60 = 0.
n n n
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Similarly, 1% Xy, (Tg — T')(dp — 0) = 0,(1) and (8 — 8)/(Ty — T')' X4, X2n(Tg — I) (89 — &) = 0,(1). Thus,
%Eifn 5 Ugo~

Terms in X;y and Y pgry have some common features, but the most complicated term we need to show
is

%[a’s”nan(X)'Gn(X)gnb  B(de, G Genb)] = 0p(1).

As &, = e, + X9,(To — I), we have %[a'?’ W Gu(NED — E(@E,G(N)Gu(NEwb)] = 0p(1f] from
the ULLN in Corollary (1| and 1[E(d’g] ! Gn(N) Gr(NERD) — E(d'e, Gl Grenb)] = op(1) from the equicon-
tinuity of L E[a’e), (0)Gn(N)'Gyp(N)el (0 ) b]. These together complete the proof of %[é’nGn(X)/Gn(X)gn -
E(e),GlGren)] = 0p(1). m
Proof of Claim Consider the moments in Xgasr, and Xgaras. The most complicated term we need to

show is

3\'—‘

n N R 1
Z ” n )\ ()\)Enb " Z [ l)nGum,GLngnb] Op( )

=1
As we can express &, = &, + Xon,(To — f) and

~

&n

(Ao — X)Gn(Xlnﬂo +endo +&n) + Xin(Bo — 3) — Xon(To — f)g-l- en (00 — S) +&n
= Misibi (65 — 6%) + &,

with 6* = (6',8'T’)’, it is sufficient to show

fz ¢ Minsibi (05 — 0 Giin N GinNsibs = 0p(1); (C.7)
1 — . ~ -
EZ[eg,anngrtbl(eg_a*)] fzn i3 n( )Gi,nO‘)C;:bQ = Op(1)5 (08)
=1
1 — ~ ~ ~
ﬁzei,ann%’:bl(@S—@*) ?’nGii,n()\)Gi,n()‘)g;:bQ = Op(l)é (C.9)
i=1
1 g ~ ~ 1 — 5
— ; i i nl— — El¢; it,nTincn = 1). 1
n§§z,nGM(A>Gm<A>e b n; (€0 GiinGinent] = 0p(1) (C.10)

Equations (C.7)), (C.8)), and (C.9) have some common features, so we will show (C.7)) as an example. As
sup; ,, Supyen |Giin(A)| = O(1) and 65 — 6" = op(1), we only need to show

ilelg E| Z €, anngnal) Gi77l(>\)§;b2| = Op(l)

12The expectation is with respect to €, only but not with respect to estimated parameters, such as . The expectation
function is then evaluated at the estimated parameters.

45



It is sufficient to show

E |sup — wMinsiar) Gm A)sib
sup o Z 1 1 (A)snba

<supFE

i,n

€. Minsua1]? sup |Gy (A)sba|
AEA

< (s e Minza 1) sup | 510 Grn V5l = O,
7,Mm 7, €

The second inequality is from the Holder’s inequality. For the equality, sup; , [le} , Minga1lls = O(1) is
directly from Claims |C.1.6} |C.1.7} |C.2.5, and |C.2.6] so we need to show sup, , ||supyep |Gin(N)siballls =
O(1). As |Gin(N)siba| = | 720 MW Grbal < 30020 AW bl

oo
[l 5up [Gin(Nsiballla < |lsup Y [A'[WiH b
AEA AEA T

[ee]
< sup 3 N[t (l + Dl
4 M=o

As |[tin(m)|[, < med+2emC, under Assumption 4.1) and |[t;,(m)]|, < Capemm under Assump-

tion 4.2) from Claims [C.1.6] and [C.2.5] together with sup,c, [Alcw < 1 from Assumption 3.2), we have

|[supyea |Gin(N)sibz2|[la < C, where C does not depend on i or n. Therefore, sup; ,, || supyca [Gi.n(N)s;b2l|l4 =
O(1).
To show equation (C.10)), using similar arguments as those in Corollary [I} Claim and Claim

we have the uniform convergence that

sup — Zf i snb—ZE Giin(N)Gin(Nenb]| = 0,(1)

AEA T
and by the equicontinuity of 2 37" | E[€3 Gyin(A)Gin(N)enbl,
lzn:E[gS Giin(NGin(Ne b]—liE[é GiinGinenb] = 0,(1)
n 2 inYiin in n n £ i,nii,nGinén D .

Thus equation (C.10) is proved.

These together complete the proof
~ —~ 1 <
Z &, GiimnN)Gr(N)Enb — - > E[E,GiinGrenb] = 0,(1).
i=1

Similarly, we can show L " gﬁnGii a(A) = LS L E(&!,Giin) = 0p(1). Therefore, if we replace 6 with
a consistent estimator 5, en with &, = Z,, — Xan, and fm with &n, then we have consistent estimators of

EQML and EGMM- ]
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