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Abstract

The spatial autoregressive (SAR) model is a standard tool for analyzing data with spatial correlation.

Conventional estimation methods rely on the key assumption that the spatial weight matrix is strictly

exogenous, which would likely be violated in some empirical applications where spatial weights are

determined by economic factors. This paper presents model specification and estimation of the SAR

model with an endogenous spatial weight matrix. We provide three estimation methods: two-stage

instrumental variable (2SIV) method, quasi-maximum likelihood estimation (QMLE) approach, and

generalized method of moments (GMM). We establish the consistency and asymptotic normality of these

estimators and investigate their finite sample properties by a Monte Carlo study.
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1 Introduction

The spatial autoregressive (SAR) model is of great interest to economists because it has a game structure

and can be interpreted as a reaction function. It is widely used in spatial econometrics and for modeling

social networks. In spatial econometrics, the SAR model has been applied to cases where outcomes of a

spatial unit at one location depend on those of its neighbors. The corresponding spatial weight matrix

is a measure of connections among different locations. Consequently, the spatial dependence parameter

provides a multiplier for the spillover effect. SAR models can also be used to model social networks. For

example, a student’s behavior (such as smoking or academic achievement) can be directly affected by his/her

friends’ behaviors. The weight matrix can then be constructed by using friendship relations, and the network

(spatial) dependence parameter can be interpreted as the strength of peer effects. As measuring spillover and

peer effects has strong policy implications, such as setting school policies, correct estimation of the spatial

dependence parameter is important to both theory and practice.

Estimation methods for the SAR model with an exogenous spatial weight matrix has been well established

in the literature: the maximum likelihood estimation (MLE) of Ord (1975) and Lee (2004); the instrumental

variable (IV) methods of Anselin (1980) and Kelejian and Prucha (1998, 1999), and the generalized method of

moments (GMM) of Lee (2007), Lee and Liu (2010), Lin and Lee (2010), and Liu et al. (2010). Consistency

and asymptotic normality of these estimators are established under the assumption that the spatial weight

matrix is strictly exogenous. This exogenous assumption may hold when spatial weights are constructed using

predetermined geographic distances; for example, between different cities or countries. However, if “economic

distance” such as the relative GDP or trade volume is used to construct the weight matrix, then it is very

likely that these elements are correlated with the final outcome. Similarly, in the social network framework,

some unobserved characteristics may affect both the friendship relationship and behavioral outcomes (Hsieh

and Lee 2011). Therefore, in many applications, the exogenous spatial weight assumption might be violated.

However, due to the technical complication in estimating spatial models with an endogenous spatial

weight matrix, to the best of our knowledge, so far no estimation method has been proposed for this case. In

Pinkse and Slade (2010), they pointed out future directions of spatial econometrics. Endogeneity of spatial

weights was among several problems they emphasized. They concluded that “many of these are still waiting

for good solutions” and the endogeneity problem “can admittedly be challenging.”

In this paper, we attempt to tackle the issue of endogenous spatial weights. By modeling explicitly

the source of endogeneity, we obtain two sets of equations – one is for the SAR outcome, and the other

is for entries of the spatial weight matrix. The disturbances in the SAR outcome equation and the error

terms in the entry equation are allowed to be correlated. When their correlation coefficient is nonzero,

the spatial weight matrix becomes endogenous. We focus on estimation issues for this type of SAR model.

By imposing assumptions of conditional mean independence and homoskedasticity, we can overcome the

endogeneity problem using the control function method. By exploring the unobservable control variables

for endogeneity in the outcome SAR equation, we propose three estimation methods. The first estimation
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method is a two-stage instrumental variables (2SIV) approach. In the first stage estimation, we consistently

estimate the parameters of the entry equation. In the second stage, we replace the unobserved control

variables in the outcome equation by the residuals of the entry equation, and then use the standard IV

methods to estimate the SAR outcome equation. The second method we propose is the quasi-maximum

likelihood estimation (QMLE), in which all the parameters can be jointly estimated via a normal likelihood

function of the equation system even the disturbances in the model are not normally distributed. The third

method is a GMM approach, in which an outcome equation with control variables for endogeneity provides

additional quadratic moments for estimation.

The main aim of this paper is to show the consistency and asymptotic normality of aforementioned

three estimators. The estimators involve statistics with linear-quadratic forms of disturbances, in which the

quadratic matrix depends on the spatial weight matrix. As entries in the spatial weight matrix are non-

linear functions of disturbances, those statistics are not really of quadratic forms with nonstochastic quadratic

matrices. Therefore, the standard asymptotic results for linear-quadratic forms do not directly apply to the

situation here. Instead, we adopt the asymptotic inference under near-epoch dependence (NED) from Jenish

and Prucha (2012).1 Our key work is to show the NED properties of random variables and functions involved

in our estimators. To do that, we assume either the spatial weight matrix is sparse or the upper bound of

its elements decreases as a power function of the physical distance. Therefore, in our setting, the physical

distance plays an important role to constrain the magnitude of the spatial weights.

The rest of this paper is organized as follows. In Section 2, we present the model specification of the

outcome equation and the entries of its spatial weight matrix. In Section 3, we propose the 2SIV, QML

and GMM estimation methods for this model. Consistency and asymptotic normality of estimates from

these methods are derived in Section 4. Some extensions with a generalized control function are discussed in

Section 5. In Section 6, Monte Carlo simulations are provided to investigate finite sample properties of our

proposed estimators and compare their performances with those under the exogenous spatial weight matrix

assumption. Related expressions of the log quasi-likelihood function are collected in Appendix A. Proofs of

all the lemmas, propositions, and theorems are given in Appendix B.

2 The model

2.1 Model specification

Following Jenish and Prucha (2009 & 2012), we consider spatial processes located on a (possibly) unevenly

spaced lattice D ⊆ Rd, d ≥ 1. Asymptotic methods we employ are increasing domain asymptotics: growth

of the sample is ensured by an unbounded expansion of the sample region as in Jenish and Prucha (2012).2

1In our earlier version, we explore finite neighbor’s dependence which would be similar to m-dependence in time series
analysis. But the NED is more general as we have found in this version.

2Infill asymptotics have not been developed for a NED process in the literature.
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Assumption 1 The lattice D ⊂ Rd0 , d0 ≥ 1, is infinitely countable. All elements in D are located at

distances of at least ρ0 > 0 from each other, i.e., ∀i, j ∈ D : ρij ≥ ρ0, where ρij is the distance between

locations i and j; w.l.o.g. we assume that ρ0 = 1.

As our asymptotic analysis is based on inference under the spatial near-epoch dependence for increasing

domain but not for infill asymptotics, physical distance plays an important role in keeping agents apart

from each other. For the case of pure economic distance, if there were economic factors which keep agents

apart, we might replace the “physical distance” in Assumption 1 by economic distance. In this regard, with

Assumption 1, our model will be more relevant for regional economic studies rather than social network ones.

In regional issues, physical distance would definitely play a role.

Let {(εi,n, vi,n); i ∈ Dn, n ∈ N} be a triangular double array of real random variables defined on a

probability space (Ω; F ; P ), where the index set Dn ⊂ D is a finite set, |Dn| is its cardinality, and D

satisfies Assumption 1. Let

Zn = X2nΓ + εn, (2.1)

where X2n is an n × k2 matrix with its elements {x2,in; i ∈ Dn, n ∈ N} being deterministic and bounded

in absolute value for all i and n, Γ is a k2 × p2 matrix of coefficients, εn = (ε1,n, ...εn,n)′ is an n× p2 matrix

of disturbances with εi,n = (ε1,in, ...εp2,in)′ being p2 dimensional column vectors, and Zn = (z1,n, ...zn,n)′

is an n × p2 matrix with zi,n = (z1,in, ...zp2,in)′. Wn = (wij,n)3 is an n × n non-negative matrix with zero

diagonals and its elements constructed by Zn : wij,n = hij(Zn) for i, j = 1, ..., n; i 6= j, where h(·) is a

bounded function.4 Yn = (y1,n., .., yn,n)′ is an n× 1 vector from a cross-sectional SAR model specified as

Yn = λWnYn +X1nβ + Vn, (2.2)

where X1n is an n× k1 matrix with its elements {x1,in; i ∈ Dn, n ∈ N} being deterministic and bounded in

absolute value for all i and n, Vn = (v1,n, ..., vn,n)′, λ is a scalar, and β = (β1, ..., βk1)′ is a k1 × 1 vector of

coefficients.

2.2 Model interpretation

We consider n agents in an area, each endowed with a predetermined location i. Any two agents are

separated away by a distance of at least 1. Due to some competition or spillover effects, each agent i

has an outcome yi,n directly affected by its neighbors’ outcomes y′j,ns. The outcome equation is yi,n =

λ
∑
j 6=i wij,nyj,n + x′1,inβ + vi,n, where the spatial weight wij,n is a measure of relative strength of linkage

3Here we simplify the notation by regarding the subscripts i and j as integer values to indicate entries in a vector or matrix
even though i and j refer formally in Assumption 1 to locations in the lattice D contained in the d0-dimensional Euclidean
space Rd.

4In the example that Wn is constructed by wij,n = 1/|zi,n−zj,n|, for the boundedness, we actually need to have a trimming
on it such that wij,n = ce0 if |zi,n − zj,n| < de0, where ce0 and de0 are constants. This seems sensible, otherwise, units with
similar values of z would have extremely strong influence on each other.
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between agents i and j, and the spatial coefficient λ provides a multiplier for the spillover effects. However,

the spatial weight wij,n is not predetermined but depends on some observable random variable Zn. We can

think of zi,n as some economic variables at location i such as GDP, consumption, economic growth rate, etc,

which influence strength of links across units.

This specification has been used in the literature, and it may introduce endogeneity into the spatial weight

matrix. For example, Anselin and Bera (1997) provided several examples in economic applications on the

use of weights based on “economic” distance. In Case et al. (1993), weights (before row normalization) of the

form wij,n = 1/|zi,n− zj,n| were specifically suggested, where zi,n and zj,n are observations on “meaningful”

socioeconomic characteristics. In Conway and Rork (2004), they used migration flow data to construct

a spatial weight matrix. Another example is in Crabbé and Vandenbussche (2008), where in addition to

the physical distance, spatial weight matrices were constructed by inverse trade share and inverse distance

between GDP per capita.

2.3 Source of endogeneity

We have the following moment assumption.

Assumption 2 The error terms vi,n and εi,n, have a joint distribution: (vi,n, ε
′
i,n)′ ∼ i.i.d.(0,Σvε), where

Σvε =

(
σ2
v σ′vε

σvε Σε

)
is positive definite, σ2

v is a scalar variance, covariance σvε = (σvε1 , ...σvεp2 )′ is a p2

dimensional vector, and Σε is a p2×p2 matrix. The supi,nE|vi,n|4+δε and supi,nE||εi,n||4+δε exist for some

δε > 0. Furthermore, E(vi,n|εi,n) = ε′i,nδ and V ar(vi,n|εi,n) = σ2
ξ .

The endogeneity of Wn comes from the correlation between vi,n and εi,n. If σvε is zero, the spatial

weight matrix Wn might be treated as strictly exogenous and we can apply conventional methodology of

SAR models for estimation. However, if σvε is not zero, Wn becomes an endogenous spatial weights matrix.

From the two conditional moments assumptions in Assumption 2, we have the p2 dimensional column

vector δ = Σ−1
ε σvε and the scalar σ2

ξ = σ2
v − σ′vεΣ−1

ε σvε. Denote ξn = Vn − εnδ, then its mean conditional

on εn is zero and its conditional variance matrix is σ2
ξIn. In particular, ξn are uncorrelated with the terms

of εn and the variance of ξn is σ2
ξ0In. The outcome equation (2.2) becomes

Yn = λWnYn +X1nβ + (Zn −X2nΓ)δ + ξn, (2.3)

with E(ξi,n|εi,n) = 0 and E(ξ2
i,n|εi,n) = σ2

ξ ; and ξi,n’s are i.i.d. across i. Our subsequent asymptotic analysis

will mainly rely on equation (2.3), where (Zn−X2nΓ) are control variables to control the endogeneity of Wn.

Assumption 2 is relatively general without imposing a specific distribution on disturbances as it is based on

only conditional moments restrictions.

In the special case that (vi,n, ε
′
i,n)′ has a jointly normal distribution, then vi,n|εi,n ∼ N(σ′vεΣ

−1
ε εi,n, σ

2
v −

σ′vεΣ
−1
ε σvε) and ξn is independent of εn in equation (2.1).

5



3 Estimation methods

3.1 The two-stage IV estimation

In the first stage, we estimate Zn = X2nΓ + εn by the ordinary least squares (OLS) method, so Γ̂ =

(X ′2nX2n)−1X ′2nZn. Then, in the second stage by substituting Γ̂ for Γ in (2.3), we have

Yn = λWnYn +X1nβ + (Zn −X2nΓ̂)δ + ξ̂n, (3.1)

where ξ̂n = ξn+X2n(Γ̂−Γ)δ = ξn+Pnεnδ with Pn = X2n(X ′2nX2n)−1X ′2n. Since Zn−X2nΓ̂ = P⊥n Zn = P⊥n εn

with P⊥n = In − Pn, (3.1) can be explicitly rewritten as

Yn = (WnYn, X1n, P
⊥
n Zn)κ+ (ξn + Pnεnδ), (3.2)

where κ =
(
λ β′ δ′

)′
. For estimation, with the control variables (Zn −X2nΓ) added in (2.3) or P⊥n Zn

in (3.2), Wn can be treated as predetermined or exogenous. However, WnYn remains endogenous in (2.3)

and (3.2). So for an IV estimation, we need instruments for WnYn. Let Qn be an n×m matrix of IVs, then

a 2SIV estimator of κ with Qn will be

κ̂ = [(WnYn, X1n, P
⊥
n Zn)′Qn(Q′nQn)−1Q′n(WnYn, X1n, P

⊥
n Zn)]−1(WnYn, X1n, P

⊥
n Zn)′Qn(Q′nQn)−1Q′nYn.

As the composite error (ξn + Pnεnδ) is not homogeneous as its variance matrix is Πn = σ2
ξ0In + δ′0Σε0δ0Pn,

we may also consider a generalized 2SIV (G2SIV), which is

κ̂G = [(WnYn, X1n, P
⊥
n Zn)′Π−1

n Qn(Q′nΠ−1
n Qn)−1Q′nΠ−1

n (WnYn, X1n, P
⊥
n Zn)]−1

·(WnYn, X1n, P
⊥
n Zn)′Π−1

n Qn(Q′nΠ−1
n Qn)−1Q′nΠ−1

n Yn.

In practice, as Πn involves unknown parameters, they need to be consistently estimated by some initial

estimates so as to have a consistent Π̂n, and a feasible G2SIV. The details of such a construction are in

Section 4.4.

3.2 The quasi-maximum likelihood estimation

As in White (1982), based on the i.i.d. disturbances (vi,n, ε
′
i,n)′ ∼ (0,Σvε) with Σvε =

(
σ2
v σ′vε

σvε Σε

)
, we

can directly write down the log quasi-likelihood function under a normal distributional specification as:

lnLn = −n ln(2π)− n

2
ln |Σvε|+ ln |Sn(λ)| (3.3)

− 1

2
[(Sn(λ)Yn −X1nβ), (vec(Zn −X2nΓ))′](Σ−1

vε ⊗ In)

(
Sn(λ)Yn −X1nβ

vec(Zn −X2nΓ)

)
,
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where Sn(λ) = In − λWn. Alternatively, by the partitioned quadratic formulation that

(vi,n, ε
′
i,n)Σ−1

vε (vi,n, ε
′
i,n)′ = (vi,n − σ′vεΣ−1

ε εi,n)′(σ2
v − σ′vεΣ−1

ε σvε)
−1(vi,n − σ′vεΣ−1

ε εi,n) + ε′i,nΣ−1
ε εi,n,

the log quasi-likelihood function can also be written as

lnLn(θ) = −n ln(2π)− n

2
lnσ2

ξ + ln |Sn(λ)| − n

2
ln |Σε| −

1

2

n∑
i=1

(z′i,n − x′2.,inΓ)Σ−1
ε (zi,n − Γ′x2,in) (3.4)

− 1

2σ2
ξ

[Sn(λ)Yn −X1nβ − (Zn −X2nΓ)δ]′[Sn(λ)Yn −X1nβ − (Zn −X2nΓ)δ].

where θ = (λ, β′, vec(Γ)′, σ2
ξ , α
′, δ′)′ with α being a J-dimensional column vector of distinct elements in Σε,

δ = Σ−1
ε σvε, and σ2

ξ = σ2
v − σ′vεΣ−1

ε σvε. The QMLE θ̂ = arg maxθ∈Θ lnLn(θ). A necessary condition is
∂ lnLn(θ̂)

∂θ = 0, where the first order derivatives of the log quasi-likelihood function are listed in Appendix A.

3.3 The generalized method of moments estimation

Let Xn collect different column vectors in X1n and X2n. For the GMM estimation, as Xn is strictly exogenous

and E(ξi,n|εi,n) = 0, a possible set of linear moments for estimation can be

E(X ′nεn) = 0, E((MnXn)′ξn) = 0, and E((MnZn)′ξn) = 0,

where Mn is an n × n matrix which can be constructed from In and Wn. For example, a finite number of

matrices Mn can be either In, W
′m1
n Wm2

n , Gn, G
′
n, and G′nGn, where Gn = Wn(In − λ0Wn)−1, for some

nonnegative integers m1 and m2. In addition to linear moments, we have quadratic moments E[ξ′n(Mn −
tr(Mn)In/n)ξn] = 0 from the assumption E(ξ2

i,n|εi,n) = σ2
ξ .5

Let Qn be an n × m∗ matrix with elements of MnZn and MnXn, then the corresponding empirical

moments can be:

(1) X ′n(Zn −X2nΓ);

(2) Q′n[Yn − λWnYn −X1nβ − (Zn −X2nΓ)δ]; and

(3) [Yn − λWnYn −X1nβ − (Zn −X2nΓ)δ]′[Mn − tr(Mn)In/n]′[Yn − λWnYn −X1nβ − (Zn −X2nΓ)δ].

With several constructed Mjn matrices, j = 1, ...,m, in place of a single Mn matrix, denote the matrices

Pjn = Mjn − tr(Mjn)In/n for j = 1, ...,m, and θG = (λ, β′, vec(Γ)′, δ)′, then the set of moment functions

5As in Lin and Lee (2010), with an unknown heteroskedasticity in ξn, i.e., E(ξ2i,n|εi,n) = σ2(εi,n), the quadratic moment

may be modified to E[ξ′n(Mn −Diag(Mn))ξn] = 0, where Diag(A) for a square matrix A denotes the diagonal matrix formed
by the diagonal elements of A, for consistent estimation.
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for the GMM estimation is

gn(θG) = (ξ′n(θG)P1nξn(θG), ..., ξ′n(θG)Pmnξn(θG), ξ′n(θG)Qn, vec(ε
′
n(θG)Xn)′)′,

where θG = (λ, β′, vec(Γ)′, δ′)′, ξn(θG) = Sn(λ)Yn −X1nβ − (Zn −X2nΓ)δ and εn(θG) = Zn −X2nΓ. Our

GMM estimator of θG is derived from θ̂Gn = arg minθ∈Θ g
′
n(θG)a′nangn(θG), where a′nan is a positive definite

matrix that may depend on the data.

4 Asymptotic properties of estimators

4.1 Key statistics

The 2SIV

For the 2SIV estimator κ̂ and G2SIV estimator κ̂G,

κ̂− κ0 = [(WnYn, X1n, P
⊥
n Zn)′Qn(Q′nQn)−1Q′n(WnYn, X1n, P

⊥
n Zn)]−1

· (WnYn, X1n, P
⊥
n Zn)′Qn(Q′nQn)−1Q′n(ξn + Pnεnδ0)

and

κ̂G − κ0 = [(WnYn, X1n, P
⊥
n Zn)′Π−1

n Qn(Q′nΠ−1
n Qn)−1Q′nΠ−1

n (WnYn, X1n, P
⊥
n Zn)]−1

·(WnYn, X1n, P
⊥
n Zn)′Π−1

n Qn(Q′nΠ−1
n Qn)−1Q′nΠ−1

n (ξn + Pnεnδ0),

where the subscript 0 on parameters denotes their true values. As Π−1
n = (σ2

ξ0In+ δ′0Σε0δ0Pn)−1 = 1
σ2
ξ0

(In−
δ′0Σε0δ0

σ2
ξ0+δ′0Σε0δ0

Pn), for the consistency and asymptotic distribution of κ̂ and κ̂G, terms we need to analyze

are Q′nQn, Q
′
nX2n, Q

′
n(WnYn, X1n, P

⊥
n εn), X ′2n(WnYn, X1n, P

⊥
n εn), Q′nξn, and Q′nPnεnδ0. Here WnYn =

Wn(In − λ0Wn)−1(X1nβ0 + εnδ0 + ξn) = Gn(X1nβ0 + εnδ0 + ξn), where Gn(λ) = Wn(In − λWn)−1 with

Gn = Gn(λ0). Let Xn be an n× k matrix collecting all distinct column vectors in X1n and X2n. Then, for

the choice of the IV matrix Qn, its column vectors can be linear combinations of Xn,WnXn,W
2
nXn, ..., and

columns in P⊥n Zn. For example, if we choose Qn = (GnXn,GnZn, Xn,Zn), which is an optimal choice of IV

matrix as derived in the following section, then terms which need to be analyzed for consistency via some

law of large numbers (LLN) are

1

n
X ′nGnXn,

1

n
X ′nG

′
nεn,

1

n
X ′nGnεn,

1

n
X ′nG

′
nGnXn,

1

n
X ′nG

′
nGnεn,

1

n
ε′nGnεn,

1

n
ε′nG

′
nGnεn,

1

n
X ′nGnξn,

1

n
X ′nG

′
nξn,

1

n
ε′nGnξn,

1

n
X ′nG

′
nGnξn, and

1

n
ε′nG

′
nGnξn.

For asymptotic distribution of the estimator, we need to consider the stochastic convergence in distribution
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via central limit theorem (CLT) for some of those terms after proper rescaling.

The QMLE

To show the consistency of the QMLE θ̂, first we need to show the uniform convergence of the log quasi-

likelihood function to its expectation, i.e., supθ∈Θ
1
n | lnLn(θ)−E(lnLn(θ))| = op(1). It is sufficient to show

the uniform convergence of the sample averages of ln |Sn(λ)| and ξn(θ)′ξn(θ), where ξn(θ) = [Sn(λ)Yn −
X1nβ − (Zn −X2nΓ)δ]. Note that

ξn(θ) = Sn(λ)S−1
n (X1nβ0 + Vn)−X1nβ − [X2n(Γ0 − Γ) + εn]δ

= (λ0 − λ)Gn(X1nβ0 + εnδ0) +X1n(β0 − β)−X2n(Γ0 − Γ)δ + εn(δ0 − δ) + [In − (λ− λ0)Gn]ξn,

where Sn = In − λ0Wn. From the Taylor expansion,

1

n
ln |Sn(λ)| = 1

n
ln |In − λWn| = −

1

n

n∑
i=1

[ ∞∑
l=1

λl

l
(W l

n)ii

]
.

Hence, in the log quasi-likelihood function, the terms which need to be analyzed are

1

n
X ′nG

′
nGnXn,

1

n
X ′nGnXn,

1

n
X ′nG

′
nεn,

1

n
X ′nGnεn,

1

n
X ′nG

′
nGnεn

1

n
ξ′nG

′
nGnXn,

1

n
ξ′nGnXn,

1

n
ξ′nG

′
nεn;

1

n
ξ′nGnεn,

1

n
ξ′nG

′
nGnεn,

1

n
ε′nG

′
nGnεn,

1

n
ε′nGnεn,

1

n
ξ′nεn,

1

n
ξ′nG

′
nGnξn, and

1

n

n∑
i=1

[ ∞∑
l=1

λl

l
(W l

n)ii

]

for consistency via LLN, and some properly rescaled terms for their asymptotic distributions via CLT.

The GMM

The GMM is based on the first two moments of ξn and εn. Some elements in gn(θG) have similar

expressions as those in the 2SIV estimator and QMLE. Some have new features to analyze, such as

1

n
X ′nM

′
nXn,

1

n
ε′nM

′
nεn ,

1

n
ξ′nM

′
nξn,

1

n
X ′nG

′
nM

′
nXn,

1

n
ε′nG

′
nM

′
nεn ,

1

n
ξ′nG

′
nM

′
nξn,

1

n
X ′nG

′
nM

′
nGnXn,

1

n
ε′nG

′
nM

′
nGnεn,

1

n
ξ′nG

′
nM

′
nGnξn,

1

n
X ′nM

′
nεn,

1

n
X ′nM

′
nξn,

1

n
ε′nM

′
nξn,

1

n
X ′nGnM

′
nεn,

1

n
X ′nGnM

′
nξn,

1

n
ε′nGnM

′
nξn,

1

n
X ′nGnM

′
nGnεn,

1

n
X ′nGnM

′
nGnξn,

1

n
ε′nGnM

′
nGnξn,

where Mn = Mn − tr(Mn)In/n and Mn is either Gn, G
′
n, or G′nGn in our example if we choose Qn =

(GnXn,GnZn, Xn,Zn). In general, Mn can be In, W
′m1
n Wm2

n , Gn, G
′
n, and G′nGn for any nonnegative

integers m1 and m2.
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4.2 Assumptions and topological structures

To analyze terms in above key statistics, we need additional assumptions and topological structures.

Assumption 3 3.1). For any i, j, and n, the spatial weight wij,n ≥ 0, wii,n = 0, and ||Wn||∞ = cw <∞.

3.2). The parameter θ = (λ, β′, vec(Γ)′, σ2
ξ , α
′, δ′)′ is in a compact set Θ in the Euclidean space Rkθ .

Here kθ = k1 + 2 + k2p2 + p2 + J, where k1 is the dimension of β, p2 is the dimension of σvε, k2p2 is the

number of parameters in Γ, and J is the dimension of α with α being the vector of all distinct elements in

Σε. The true parameter θ0 is contained in the interior of Θ. Furthermore, supλ∈Λ |λ|cw < 1, where Λ is the

parameter space for λ.

3.3). Let the k×n matrix Xn collect all distinct column vectors in X1n and X2n. All elements in Xn are

deterministic and bounded in absolute value. limn→∞
1
nX
′
nXn exists and is nonsingular.

Assumption 4 We consider two cases of Wn:

4.1) Case 1: The spatial weight wij,n = hij(zi,n, zj,n) for i 6= j, where hij(·)’s are non-negative, uniformly

bounded functions of some observable variable Zn. 0 ≤ wij,n ≤ c1ρij
−c3d0 for some 0 ≤ c1 and c3 > 36.

Furthermore, there exist at most K (K ≥ 1) columns of Wn that the column sum exceeds cw, where K is a

fixed number that does not depend n.

4.2) Case 2: The spatial weight wij,n = 0 if ρij > ρc, i.e., there exists a threshold ρc > 1 and if

the geographic distance exceeds ρc, then the weight is zero. For i 6= j, wij,n = hij(zi,n, zj,n) or wij,n =

hij(zi,n, zj,n)/
∑
ρik≤ρc hik(zi,n, zk,n), where hij(·)’s are non-negative, uniformly bounded functions.

Assumptions 3 and 4 provide the essential features of the weights matrix and parameters for the model.

Assumptions 3.1) and 3.2) are standard assumptions in the spatial econometrics literature to limit the spatial

correlation in a manageable degree. Assumption 3.3) requires that all distinct regressors in X1n and X2n

are linearly independent. Note that Assumption 3.3) allows the special case that X1n and X2n are the

same. Due to interactions of Wn and Yn, and nonlinearity of Zn in Wn, as contrary to a linear simultaneous

equation system, exclusive restrictions on regressors for identification may not be needed. From Assumption

4, we can see that the geographic distance plays an important role in constraining magnitudes of our spatial

weights. The spatial weight of two locations would be larger if they were closer to each other or when their

economic indices were more similar, but their weights would become smaller when two units are further apart.

Assumption 4.1) allows the situation that all agents are spatially correlated but the spatial weight decreases

sufficiently fast at a certain rate as physical distances increase. Symmetry is not imposed on the spatial weight

matrix. If Wn is indeed symmetric, then by Assumption 3.1), the column sum will also be uniformly bounded

by cw. In that case, the second part on the column sum norm condition in Assumption 4.1) will not be

needed. However, in general, Wn can be asymmetric, i.e., hij(zi,n, zj,n) 6= hji(zj,n, zi,n). For an asymmetric

Wn, the second part of Assumption 4.1) limits the number of columns which have large magnitudes relative

6As c
−ρij
0 decreases faster than ρ−c3d0ij , all the results hold for the case of 0 ≤ wdij,n ≤ c1c

−ρij
0 with some c1 ≥ 0 and c0 > 1.
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to the row sum norm. For example, big countries may have great impact on small countries, but those small

countries may have little or zero influence on big countries. In this example, we have some “stars” whose

row sums are bounded by cw, while their column sums can be much larger. Assumption 4.1) assumes that

the number of such stars can only be finite and bounded. Assumption 4.2), also imposed in Qu and Lee

(2012), allows for a row-normalized spatial weight matrix: wij,n = hij(zi,n, zj,n)/
∑
ρik≤ρc hik(zi,n, zk,n). In

this case, wij,n might have agents linked in an area, which could be wide, but once the geographic distance

between two agents exceeds a threshold, the two units are not spatially interacted.

Our asymptotic analysis of the proposed estimators will be based on inference under NED. The following

notion of NED for random fields is from Jenish and Prucha (2012).

Definition 1 For any random vector Y, ||Y ||p = [E|Y |p]1/p denotes its Lp-norm where |Y | is the Eu-

clidean norm of Y. Denote Fi,n(s) as a σ-field generated by the random vectors ςj,n’s located within the ball

Bi(s), which is a ball centered at the location i with a radius s in a d0-dimensional Euclidean space D.

Definition 2 (NED) Let T = {Ti,n, i ∈ Dn, n ≥ 1} and ς = {ςi,n, i ∈ Dn, n ≥ 1} be random fields with

||Ti,n||p <∞, p ≥ 1, where Dn ⊂ D and |Dn| → ∞ as n→∞, and let d = {di,n, i ∈ Dn, n ≥ 1} be an array

of finite positive constants. Then the random field T is said to be Lp-near-epoch dependent on the random

field ς if ||Ti,n − E(Ti,n|Fi,n(s))||p ≤ di,nϕ(s) for some sequence ϕ(s) ≥ 0 such that lims→∞ ϕ(s) = 0. The

ϕ(s), which is, without loss of generality, assumed to be non-increasing, is called the NED coefficient, and

the di,n’s are called NED scaling factors. T is said to be Lp-NED on ς of size −α if ϕ(s) = O(s−µ) for

some µ > α > 0. Furthermore, if supn supi∈Dn di,n < ∞, then T is said to be uniformly Lp-NED on ς. If

ϕ(s) = O(ρs), where 0 < ρ < 1, then T is called geometrically Lp-NED on ς.

4.3 Asymptotic inference of key statistics

Let ς∗i,n be a vector-valued function of the error term ςi,n = (εi,n, ξi,n) and the observed Xn, i.e., ς∗i,n =

fi(εi,n, ξi,n, Xn, θ0). As Xn is deterministic, ς∗i,n is purely determined by the location i, independent of error

terms associated with any other places. Let Mn = A′nBn, where An and Bn are either Wm1
n or Gm2

n with

m1 and m2 being finite non-negative integers. Denote ς∗n = (ς∗1n, ...ς
∗
n,n). The NED property of the statistic

a′ς∗′nMnς
∗
nb for some constant vectors a and b with ςi,n as the basis for the NED is established in Appendix

C.1 under Assumption 4.1) for the case 1 and in Appendix C.2 for case 2 under Assumption 4.2). Then

based on the asymptotic inference under NED, we have the following LLN.

Proposition 1 Under Assumptions 1, 3.1), and 4, suppose supi,n ||ς∗i,n||4 < ∞, then 1
nE|a

′ς∗′nMnς
∗
nb| =

O(1) and 1
n [a′ς∗′nMnς

∗
nb− E(a′ς∗′nMnς

∗
nb)] = op(1), where a and b are conformable vectors of constants.

Furthermore, with the compactness of the parameter space of θ, we have the following ULLN.

Corollary 1 Under Assumptions 1, 3.1), 3.2), and 4, suppose supi,n ||ς∗i,n||4 <∞, then

11



1
na
′ς∗n(θ)′Gm1

n (λ)′Gm2
n (λ)ς∗n(θ)b is stochastic equicontinuous and

sup
θ∈Θ

1

n
|a′ς∗n(θ)′Gm1

n (λ)′Gm2
n (λ)ς∗n(θ)b− E(a′ς∗n(θ)′Gm1

n (λ)′Gm2
n (λ)ς∗n(θ)b)| = op(1),

where ς∗i,n(θ) = fi(εi,n, ξi,n, Xn, θ) with θ entering fi polynomially, m1 and m2 are finite non-negative inte-

gers, and a and b are conformable vectors of constants.

Denote

Rn =

m∑
j=1

[a′jς
∗′
nMjnς

∗
nbj − E(a′jς

∗′
nMjnς

∗
nbj)] =

n∑
i=1

ri,n,

where each Mjn matrix, j = 1, ...,m can be expressed as Mjn = A′jnBjn with Ajn and Bjn being ei-

ther Wm1
n or Gm2

n . Denote σ2
Rn as the variance of Rn and ri,n =

∑m
j=1

∑n
k=1[a′jς

∗
i,nMjn(i, k)ς∗k,nbj −

E(a′jς
∗
i,nMjn(i, k)ς∗k,nbj)]. Then Rn =

∑n
i=1 ri,n and σ2

Rn = V ar(
∑n
i=1 ri,n). We have the following CLT

for Rn.

Proposition 2 Under Assumptions 1, 2, 3.1), and 4, suppose supi,n ||ς∗i,n||4+δε < ∞ for some δε > 0, and

infn
1
nσ

2
Rn > 0, then Rn/σRn

d→ N(0, 1).

The LLN in Proposition 1 and the CLT in Proposition 2 provide the essential tools for asymptotic analysis

of the consistency and asymptotic normality of the 2SIV, QML and GMM estimators in our model.

4.4 Consistency and asymptotic normality of estimators

The 2SIV

To show the consistency and asymptotic normality of the 2SIV and G2SIV estimators, in addition to the

convergence of each separated term, we need some rank conditions on relevant limiting matrices.

Assumption 5 5.1) Columns of Qn are from Mnqn and MnZn, where qn is a strictly exogeneous vector

and Mn = A′nBn, in which An and Bn are either Wm1
n or Gm2

n with m1 and m2 being finite non-negative

integers.

5.2) lim
n→∞

1
nE(Q′nQn) exists and is nonsingular;

5.3) lim
n→∞

1
nE[Q′n(Gn(X1nβ0 + εnδ0), X1n, εn)] has full column rank.

It is of interest to note that endogeneity of Wn in our model may provide parameter identification via

the IV estimation, even if there are no relevant regressors X1n in the SAR equation. In the SAR with an

exogenous Wn, if there are no regressors X1n in the equation, i.e., β0 = 0, its corresponding limiting matrix

limn→∞
1
nE[Q′n(GnX1nβ0, X1n)] = [0, limn→∞

1
nQ
′
nX1n] would not have full column rank. However, with

endogeneity, lim
n→∞

1
nE[Q′n(Gnεnδ0, X1n, εn)] may have full column rank.
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Theorem 1 Under Assumptions 1-5, the 2SIV estimator κ̂ and the G2SIV estimator κ̂G are consistent

estimators of κ0. Furthermore,
√
n (κ̂− κ0)

d→ N(0,ΣIV ) and
√
n (κ̂G − κ0)

d→ N(0,ΣGIV ), where

ΣIV = plim
n→∞

1

n
(U ′nAqnUn)−1U ′nAqnΠnAqnUn(U ′nAqnUn)−1 and

ΣGIV = plim
n→∞

1

n
[U ′nΠ−1

n Qn(Q′nΠ−1
n Qn)−1Q′nΠ−1

n Un]−1

with Un = [Gn(X1nβ0 + εnδ0), X1n, εn] and Aqn = Qn(Q′nQn)−1Q′n.

By the Cauchy-Schwarz inequality, U ′nΠ−1
n Qn(Q′nΠ−1

n Qn)−1Q′nΠ−1
n Un ≤ U ′nΠ−1

n Un and the “=” holds if

the columns of Un are in the linear space spanned by the columns of Qn. Therefore, if column vectors in the

IV matrix Qn consist of GnXn, GnZn, Xn, and Zn, then the best G2SIV estimator based on this optimal

Qn has the smallest limiting variance ΣBGIV = plim
n→∞

1
n (U ′nΠ−1

n Un)−1.

However, the best G2SIV estimator is not feasible because σ2
ξ0 and δ′0Σε0δ0 in Πn as well as λ0 in Gn are

unknown. In practice, we may use Xn WnXn, WnZn, etc. as IV matrices to get an initial consistent estimate

κ̂ by 2SIV, and then using Gn(λ̂)Xn, Gn(λ̂)Zn, Xn, and Zn as new IVs and substituting Π̂n = σ̂2
ξIn+δ̂′Σ̂εδ̂Pn,

where Σ̂ε = 1
nZ
′
nP
⊥
n Zn and σ̂2

ξ = 1
n (Yn− λ̂WnYn−X1nβ̂−P⊥n Znδ̂)′(Yn− λ̂WnYn−X1nβ̂−P⊥n Znδ̂), for Πn

to obtain the feasible best G2SIV estimator κ̂FBGIV . The following theorem shows that κ̂FBGIV has the

same limiting distribution as the best G2SIV estimator.

Theorem 2 Under Assumptions 1-5, the feasible best G2SIV estimator κ̂FBGIV is a consistent estimator

of κ0 and
√
n (κ̂FBGIV − κ0)

d→ N(0,ΣBGIV ).

The QMLE

Assumption 6 Either a) limn→∞
1
nE[(Gn(X1nβ0 +εnδ0), X1n, εn)′(Gn(X1nβ0 +εnδ0), X1n, εn)] exists and

is nonsingular, or b) Sn(λ)′Sn(λ) is not proportional to S′nSn with probability one whenever λ 6= λ0.

Assumption 6 is an identification condition for the model. Assumption 6a) is a rank condition, which

is similar to Assumption 5.3) for the 2SIV. Assumption 6b) explores the i.i.d. disturbances of the model

so that the reduced form of Yn has a unique variance structure. A sufficient condition that guarantees the

linear independence of Sn(λ)′Sn(λ) with S′nSn is that the matrices In, (Wn + W ′n) and W ′nWn are linearly

independent.7 Assumption 6 also implies that the information matrix of this model is nonsingular as shown

in Claim C.3.2.

With identification, the uniform convergence of supθ∈Θ
1
n

∣∣lnLn(θ)− E 1
n lnLn(θ)

∣∣ p→ 0 and the equicon-

tinuity of lim
n→∞

1
nE lnLn(θ0) together imply the consistency of the QMLE.

7Here is a simple proof: Suppose that for some c 6= 0, Sn(λ)′Sn(λ) = cS′nSn with probability one. It follows that (1 −
c)In + (cλ0 − λ)(Wn + W ′n) + (λ2 − cλ20)W ′nWn = 0 with probability one. Under the linear independence of In, (Wn + W ′n),
and W ′nWn, it must be c = 1 and λ0 = λ.
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Theorem 3 Under Assumptions 1-4, and 6, the QMLE θ̂ is a consistent estimator of θ0 and
√
n(θ̂− θ0)

d→
N(0,ΣQML), where

ΣQML =

(
lim
n→∞

1

n
E(

∂2 lnLn(θ0)

∂θ∂θ′
)

)−1

lim
n→∞

1

n
E(

∂ lnLn(θ0)

∂θ

∂ lnLn(θ0)

∂θ′
)

(
lim
n→∞

1

n
E(

∂2 lnLn(θ0)

∂θ∂θ′
)

)−1

.

Expressions for each term of ΣQML are in Appendix A. In the special case that (vi,n, ε
′
i,n)′ is jointly

normal, QMLE becomes MLE and the asymptotic variance is simply −
(

lim
n→∞

E( 1
n
∂2 lnLn(θ0)

∂θ∂θ′ )
)−1

.

The GMM

One advantage of the GMM approach compared to the QML method is that the GMM estimator can

be computationally simpler as the determinant of the Jacobian transformation, |In − λWn|, needs not to be

evaluated whereas with QMLE it does. To prove the consistency and asymptotic normality of the GMM

estimator, we impose following assumptions.

Assumption 7 7.1) The n×m∗ IV matrix Qn has its columns from Mnqn and MnZn, where qn is a strictly

exogeneous vector and Mn = A′nBn, in which An and Bn are either Wm1
n or Gm2

n with m1, and m2 being

non-negative integers. The n×n square matrices Pjn = Mjn− tr(Mjn)In/n (j = 1, ...,m for some finite m)

have zero trace.

7.2) plim
n→∞

1
nangn(θG) = 0 has a unique root at θG0 in ΘG.

7.3) plim
n→∞

1
nanDn exists and has the full rank (1 + k1 + k2p2 + p2), where Dn = −plim

n→∞
1
n
∂gn(θG0 )
∂θG′

.

For simplicity, 7.2) in Assumption 7 is a high level sufficient condition for identification. Given specific

moments as suggested in section 3.3, it is possible to have Assumption 7.2) satisfied with some sufficient

conditions on Qn and Pjn’s as in Lee (2007). The simplest sufficient condition is the ability to construct

consistent IV estimation of the model equations by some proper IV matrix Qn, as in Assumption 5.

By applying Propositions 1 and 2, we have the following theorem.

Theorem 4 Under Assumptions 1-4, and 7, the GMM estimator θ̂Gn = arg minθ∈Θ g
′
n(θG)a′nangn(θG) is a

consistent estimator of θG0 , and
√
n(θ̂Gn − θG0 )

d→ N(0,ΣGMM ), where

ΣGMM = lim
n→∞

1

n
(D′na

′
nanDn)−1D′na

′
nanΩn(θG0 )a′nanDn(D′na

′
nanDn)−1,

with Dn = − 1
n
∂(gn(θG0 ))
∂θG′

and Ωn(θG0 ) = V ar(gn(θG0 )).

Detailed expressions of Dn and Ωn(θG0 ) are in (C.5) and (C.6) of Appendix C. By the generalized Cauchy-

Schwarz inequality, the optimal weighting matrix for the GMM estimation with the moment functions gn(θG)
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is [Ωn(θG0 )]−1. Then, with a consistent estimator Ω̂n of Ωn(θG0 ), the feasible “optimal” GMM is obtained from

minθ∈Θ g
′
n(θG)Ω̂−1

n gn(θG) and it will have the smallest asymptotic variance (limn→∞
1
nD
′
n[Ωn(θG0 )]−1Dn)−1.8

4.5 Estimated variance-covariance matrix of estimators

For QMLE, all parameters in θ are jointly estimated, so directly we have a consistent estimator of σ2
ξ0

.

For 2SIV and GMM methods, we do not estimate σ2
ξ0

directly and therefore need to construct a consistent

estimator for it. Expressions for the estimated variance-covariance matrix of ΣIV and ΣBGIV are based on

the following result.

Claim 1 Suppose (λ̂,β̂′,γ̂′,δ̂)′ is a consistent estimator of (λ0, β
′
0,γ′0, δ0)′, then σ̂2

ξ = 1
n ξ̂
′
nξ̂n is a consistent

estimator of σ2
ξ0

, where ξ̂n = Sn(λ̂)Yn − X1nβ̂ − (Zn − X2nΓ̂)δ̂. Furthermore, if (λ0, β
′
0,γ′0, δ0)′ is replaced

with (λ̂,β̂′,γ̂′,δ̂)′ and εn with ε̂n = Zn−X2nΓ̂ in ΣIV and ΣBGIV to obtain, respectively, empirical estimates

Σ̂IV and Σ̂BGIV , then Σ̂IV
p→ ΣIV and Σ̂BGIV

p→ ΣBGIV .

Based on this Claim, the estimated asymptotic variance-covariance matrices for the 2SIV estimator κ̂

and the feasible best G2SIV estimator κ̂FBGIV are, respectively,

1

n
Σ̂IV = (Û ′nAqnÛn)−1Û ′nAqnΠ̂nAqnÛn(Û ′nAqnÛn)−1 and

1

n
Σ̂BGIV = (Û ′nΠ̂−1

n Ûn)−1,

where

Ûn = [Gn(λ̂)(X1nβ̂ + P⊥n Znδ̂), X1n, P
⊥
n Zn] and Π̂n = σ̂2

ξIn + δ̂′Σ̂εδ̂Pn with

Σ̂ε =
1

n
Z ′nP

⊥
n Zn and σ̂2

ξ =
1

n
(Yn − λ̂WnYn −X1nβ̂ − P⊥n Znδ̂)′(Yn − λ̂WnYn −X1nβ̂ − P⊥n Znδ̂).

For ΣQML and ΣGMM , we have similar terms as those in ΣIV , but also special ones involving the third

and fourth orders of ξin, such as 1
n

∑n
i=1E[ξ3

i,nGin(X1nβ0 + εnδ0)Gii,n] and 1
n

∑n
i=1E(ξ4

i,nGii,n). But they

can be estimated by empirical moments with estimated coefficients.

Claim 2 If θ0 is replaced with a consistent estimator θ̂, εn with ε̂n = Zn −X2nΓ̂, and ξin with ξ̂in, where

ξ̂in is the ith element of ξ̂n = Sn(λ̂)Yn−X1nβ̂− (Zn−X2nΓ̂)δ̂, in ΣQML and ΣGMM to obtain, respectively,

empirical estimates Σ̂QML and Σ̂GMM , then Σ̂QML
p→ ΣQML and Σ̂GMM

p→ ΣGMM .

5 Extension to nonlinear conditional mean

Our previous analysis is based on the linear conditional mean E(vi,n|εi,n) = εi,nδ in Assumption 2. As

a possible generalization, the linear conditional mean can be relaxed to a polynomial function with little

8With an exogenous spatial weights matrix, Liu et al. (2010) have derived the best selection of moments for GMM estimation.
However, due to complexity of the model with endogenous spatial weights matrix, the construction of the best GMM moments
remains an open question.
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additional complication for our proposed estimators. For simplicity, assume p2 = 1 and E(vi,n|εi,n) =∑m
m=1 ε

m
i,nδm, where m is a finite positive integer. For an n× 1 vector b = (bi), b

m denotes an n× 1 vector

with the ith element as bmi . Then equation (2.3) can be generalized to

Yn = λWnYn +X1nβ +
m∑
m=1

(Zn −X2nγ)mδm + ξn.

The log quasi-likelihood function is

lnLn(θ) = ln[f(Zn)f(Yn|Zn)] = −n ln(2π)− n

2
lnσ2

ξσ
2
ε + ln |Sn(λ)| − 1

2σ2
ε

(Zn −X2nγ)′(Zn −X2nγ)

− 1

2σ2
ξ

(
Sn(λ)Yn −X1nβ −

m∑
m=1

(Zn −X2nγ)mδm

)′(
Sn(λ)Yn −X1nβ −

m∑
m=1

(Zn −X2nγ)mδm

)
.

And the possible set of linear moments for GMM estimation is E(X ′nεn) = 0, E(X ′nξn) = 0, E(Z ′nξn) = 0,

E((GnXn)′ξn) = 0, and E((Gn(Zn −X2nγ)m)′ξn) = 0 for m = 1, ...,m. Note that

ξn(θ) = Sn(λ)Yn −X1nβ −
m∑
m=1

(Zn −X2nγ)mδm

= Sn(λ)S−1
n (X1nβ0 +

m∑
m=1

εmn δm0 + ξn)−X1nβ −
m∑
m=1

[X2n(γ0 − γ) + εn]mδm

= (λ0 − λ)Gn(X1nβ0 +

m∑
m=1

εmn δm0) +X1n(β0 − β) +
m∑
m=1

εmn (δm0 − δm)

−
m∑
m=1

{[X2n(γ0 − γ) + εn]m − εmn }δm + [In − (λ− λ0)Gn]ξn.

Then in this general setting, the new additional statistics involve higher orders of εn, e.g., 1
nε

l1′
n Mnε

l2
n for l1,

l2,= 1, ...,m. But Claims C.1.6, C.1.7, C.2.5 and C.2.6 are general enough to ensure the NED property of

these statistics, so the 2SIV, QMLE and GMM approaches can still be applied here.

6 Monte Carlo Simulations

6.1 Data generating process

In this section, we evaluate four estimation methods of a SAR with an endogenous Wn. The data generating

process (DGP) is

Yn = (In − λWn)−1(Xnβ + Vn),
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where xi,n = (xi1,n, xi2,n)′ with xi1,n = 1 and xi2,n ∼ N(0, 1); β1 = β2 = 1. Here we let X1n = X2n = Xn.

The endogenous, row-normalized Wn = (wij,n) is constructed as follows:

1. Generate bivariate normal random variables (vi,n, εi,n) from i.i.d N

(
0,

(
1 ρ

ρ 1

))
as disturbances

in the outcome equation and the spatial weight equation.

2. Construct the spatial weight matrix as the Hadamard product Wn = W d
n ◦W e

n, i.e., wij,n = wdij,nw
e
ij,n,

where W d
n is a predetermined matrix based on geographic distance: wdij,n = 1 if the two locations are

neighbors and otherwise 0; W e
n is a matrix based on economic similarity: weij,n = 1/|zi,n− zj,n| if i 6= j

and weii,n = 0, where elements of Zn is generated by zi,n = 1 + 0.8xi2,n + εi,n.

3. Row-normalize Wn.

For the predeterminedW d
n , we use four examples. First, the U.S. states spatial weight matrixWS(49×49),

based on the contiguity of the 48 contiguous states and D.C.; second, the Toledo spatial weight matrix

WO(98× 98), based on the 5 nearest neighbors of 98 census tracts in Toledo, Ohio; third, the Iowa “Adja-

cency” spatial weight matrix WA(361× 361), based on the adjacency of 361 school districts in Iowa in 2009;

and lastly, the Iowa “County” spatial weight matrix WC(361× 361), based on whether the school districts

are in the same county in Iowa in 2009.

In the simulation, we compare four different estimation methods: conventional IV, 2SIV, conventional

MLE of SAR, and the MLE in section 2.4. The conventional method refers to the case of treating Wn as

exogenous. We refer to these four methods as IV, 2SIV, SAR, and MLE in tables. Here 2SIV and MLE

correctly treat Wn as endogenous, but the conventional IV and SAR methods only estimate the outcome

equation (Zn equation is not estimated) since they treat Wn as exogenous. Of particular interest, we want

to see how large the bias is for the two conventional estimation methods when Wn is endogenous. To

generate different degrees of endogeneity, we choose correlation coefficients ρ = 0.2, 0.5, and 0.8. We also

let the spatial correlation to be λ = 0.2 and 0.4 to investigate how the spatial correlation parameter affects

estimates. 1000 replications are carried out for each setting9.

6.2 Monte Carlo results

Tables 1-6 report the empirical mean of each estimator, the empirical mean of its estimated standard error

based on the corresponding asymptotic variance-covariance matrix (in parentheses), and the empirical stan-

dard deviation of the estimator (in brackets) based on 1000 replications using WS, WO, WA, or WC as

the predetermined spatial weight matrices. In each table, the upper panel shows the results for λ = 0.2 and

the lower panel for λ = 0.4. To see how the different estimation methods behave under different degrees of

endogeneity, we conduct three sets of simulations: results for weak endogeneity (ρ = 0.2) are in Tables 1 and

2, medium endogeneity (ρ = 0.5) in Tables 3 and 4, and strong endogeneity (ρ = 0.8) in Tables 5 and 6.

9We try the DGP of some other values of β and γ. The results are similar.
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Table 1: Estimates from spatial weight matrices with weak endogeneity (small sample)

ρ = 0.2 WS(n=49) WO(n=98)
λ = 0.2 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.1229 0.1922 0.1391 0.1808 0.0784 0.1749 0.1241 0.1777
(0.2519) (0.2422) (0.1362) (0.1306) (0.2085) (0.1986) (0.1142) (0.1087)
[0.2560] [0.2659] [0.1293] [0.1286] [0.2043] [0.2095] [0.1027] [0.1010]

β̂1 1.0993 1.0036 1.0808 1.0234 1.1680 1.0382 1.1048 1.0327
(0.3743) (0.3632) (0.2324) (0.2266) (0.2993) (0.2873) (0.1834) (0.1774)
[0.3717] [0.3773] [0.2283] [0.2324] [0.3029] [0.3044] [0.1792] [0.1832]

β̂2 0.9759 0.9815 0.9884 0.9915 0.9675 0.9852 0.9810 0.9906
(0.1604) (0.1606) (0.1505) (0.1505) (0.1173) (0.1182) (0.1103) (0.1105)
[0.1684] [0.1686] [0.1588] [0.1593] [0.1228] [0.1230] [0.1158] [0.1172]

γ̂1 1.0044 1.0044 1.0020 1.0020
(0.1419) (0.1390) (0.1013) (0.1002)
[0.1498] [0.1498] [0.1056] [0.1056]

γ̂2 0.7987 0.7987 0.8038 0.8038
(0.1533) (0.1502) (0.1102) (0.1090)
[0.1604] [0.1604] [0.1108] [0.1108]

δ̂ 0.2012 0.1996 0.1994 0.1998
(0.1545) (0.1416) (0.1072) (0.1003)
[0.1616] [0.1523] [0.1093] [0.1023]

λ = 0.4 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.3198 0.3857 0.3287 0.3736 0.2792 0.3717 0.3159 0.3742
(0.2402) (0.2305) (0.1253) (0.1184) (0.2015) (0.1883) (0.1046) (0.0977)
[0.2537] [0.2593] [0.1229] [0.1262] [0.2028] [0.2029] [0.0994] [0.1005]

β̂1 1.1386 1.0173 1.1273 1.0453 1.2201 1.0557 1.1525 1.0487
(0.4614) (0.4456) (0.2676) (0.2571) (0.3742) (0.3519) (0.2117) (0.2008)
[0.4784] [0.4799] [0.2705] [0.2684] [0.3876] [0.3822] [0.2141] [0.2105]

β̂2 0.9803 0.9815 0.9924 0.9929 0.9729 0.9855 0.9836 0.9912
(0.1600) (0.1598) (0.1509) (0.1503) (0.1158) (0.1159) (0.1100) (0.1096)
[0.1670] [0.1670] [0.1587] [0.1587] [0.1207] [0.1204] [0.1150] [0.1158]

γ̂1 1.0044 1.0044 1.0020 1.0020
(0.1419) (0.1390) (0.1013) (0.1002)
[0.1498] [0.1498] [0.1056] [0.1056]

γ̂2 0.7987 0.7987 0.8038 0.8038
(0.1533) (0.1502) (0.1102) (0.1090)
[0.1604] [0.1604] [0.1108] [0.1108]

δ̂ 0.2002 0.1991 0.1995 0.1999
(0.1535) (0.1412) (0.1060) (0.0998)
[0.1599] [0.1415] [0.1076] [0.1016]

Note: Observations n = 49 or 98, β1 = β2 = γ1 = 1, and γ2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 2: Estimates from spatial weight matrices with weak endogeneity (large sample)

ρ = 0.2 WA(n=361) WC(n=361)
λ = 0.2 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.1187 0.1986 0.1512 0.1963 0.1536 0.1987 0.1743 0.1954
(0.0908) (0.0850) (0.0555) (0.0531) (0.0744) (0.0691) (0.0418) (0.0403)
[0.0868] [0.0859] [0.0541] [0.0544] [0.0731] [0.0697] [0.0417] [0.0403]

β̂1 1.1082 1.0036 1.0654 1.0066 1.0630 1.0037 1.0356 1.0079
(0.1300) (0.1232) (0.0896) (0.0871) (0.1116) (0.1053) (0.0762) (0.0747)
[0.1275] [0.1238] [0.0882] [0.0868] [0.1114] [0.1060] [0.0753] [0.0731]

β̂2 0.9919 0.9994 0.9961 1.0003 0.9945 0.9990 0.9981 1.0001
(0.0562) (0.0561) (0.0554) (0.0554) (0.0562) (0.0560) (0.0554) (0.0553)
[0.0565] [0.0563] [0.0552] [0.0553] [0.0564] [0.0561] [0.0553] [0.0553]

γ̂1 0.9966 0.9966 0.9966 0.9966
(0.0528) (0.0526) (0.0528) (0.0526)
[0.0543] [0.0543] [0.0543] [0.0543]

γ̂2 0.8005 0.8005 0.8005 0.8005
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0555] [0.0555] [0.0555] [0.0555]

δ̂ 0.2010 0.2005 0.2008 0.2004
(0.0536) (0.0521) (0.0524) (0.0516)
[0.0553] [0.0543] [0.0541] [0.0535]

λ = 0.4 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.3233 0.3980 0.3501 0.3952 0.3591 0.3982 0.3764 0.3955
(0.0855) (0.0783) (0.0504) (0.0476) (0.0649) (0.0590) (0.0353) (0.0337)
[0.0819] [0.0792] [0.0499] [0.0487] [0.0637] [0.0596] [0.0361] [0.0337]

β̂1 1.1355 1.0053 1.0886 1.0100 1.0734 1.0051 1.0430 1.0096
(0.1582) (0.1462) (0.1024) (0.0981) (0.1256) (0.1161) (0.0812) (0.0790)
[0.1549] [0.1477] [0.1022] [0.0983] [0.1251] [0.1172] [0.0813] [0.0774]

β̂2 0.9974 0.9994 0.9994 1.0006 1.0000 0.9991 1.0012 1.0007
(0.0560) (0.0556) (0.0554) (0.0552) (0.0561) (0.0556) (0.0554) (0.0552)
[0.0556] [0.0556] [0.0551] [0.0552] [0.0554] [0.0554] [0.0551] [0.0551]

γ̂1 0.9966 0.9966 0.9966 0.9966
(0.0528) (0.0526) (0.0528) (0.0526)
[0.0543] [0.0543] [0.0543] [0.0543]

γ̂2 0.8005 0.8005 0.8005 0.8005
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0555] [0.0555] [0.0555] [0.0555]

δ̂ 0.2010 0.2005 0.2008 0.2006
(0.0529) (0.0519) (0.0521) (0.0516)
[0.0547] [0.0540] [0.0538] [0.0534]

Note: Observations n = 361, β1 = β2 = γ1 = 1, and γ2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 3: Estimates from spatial weight matrices with medium endogeneity (small sample)

ρ = 0.5 WS(n=49) WO(n=98)
λ = 0.2 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.0318 0.1967 0.0839 0.1835 −0.0455 0.1805 0.0531 0.1819
(0.2554) (0.2004) (0.1384) (0.1164) (0.2163) (0.1602) (0.1169) (0.0954)
[0.2378] [0.2171] [0.1292] [0.1227] [0.1924] [0.1672] [0.1048] [0.0974]

β̂1 1.2234 0.9985 1.1560 1.0197 1.3352 1.0298 1.2005 1.0268
(0.3781) (0.3124) (0.2344) (0.2123) (0.3097) (0.2401) (0.1863) (0.1633)
[0.3550] [0.3207] [0.2339] [0.2145] [0.2964] [0.2508] [0.1875] [0.1689]

β̂2 0.9626 0.9860 0.9794 0.9920 0.9342 0.9866 0.9615 0.9905
(0.1601) (0.1603) (0.1501) (0.1510) (0.1185) (0.1177) (0.1100) (0.1109)
[0.1684] [0.1653] [0.1580] [0.1588] [0.1268] [0.1214] [0.1158] [0.1173]

γ̂1 1.0033 1.0033 1.0023 1.0023
(0.1422) (0.1392) (0.1014) (0.1004)
[0.1475] [0.1475] [0.1051] [0.1051]

γ̂2 0.7984 0.7984 0.8022 0.8022
(0.1536) (0.1505) (0.1103) (0.1092)
[0.1596] [0.1596] [0.1130] [0.1130]

δ̂ 0.5050 0.5014 0.4995 0.4989
(0.1376) (0.1257) (0.0960) (0.0893)
[0.1476] [0.1384] [0.1008] [0.0954]

λ = 0.4

λ̂ 0.2318 0.3921 0.2843 0.3773 0.1593 0.3788 0.2606 0.3792
(0.2510) (0.1909) (0.1287) (0.1062) (0.2144) (0.1515) (0.1082) (0.0864)
[0.2417] [0.2116] [0.1250] [0.1127] [0.1951] [0.1600] [0.1025] [0.0894]

β̂1 1.2981 1.0072 1.2078 1.0384 1.4337 1.0418 1.2510 1.0396
(0.4796) (0.3792) (0.2727) (0.2394) (0.3972) (0.2901) (0.2175) (0.1841)
[0.4638] [0.4033] [0.2791] [0.2462] [0.3824] [0.3075] [0.2242] [0.1926]

β̂2 0.9733 0.9858 0.9874 0.9930 0.9471 0.9870 0.9705 0.9910
(0.1609) (0.1589) (0.1509) (0.1505) (0.1177) (0.1153) (0.1099) (0.1099)
[0.1670] [0.1637] [0.1579] [0.1580] [0.1246] [0.1190] [0.1152] [0.1159]

γ̂1 1.0033 1.0033 1.0023 1.0023
(0.1353) (0.1392) (0.1048) (0.1004)
[0.1475] [0.1475] [0.1051] [0.1051]

γ̂2 0.7984 0.7984 0.8022 0.8022
(0.1422) (0.1505) (0.1103) (0.1092)
[0.1596] [0.1596] [0.1130] [0.1130]

δ̂ 0.5043 0.5013 0.5000 0.4992
(0.1536) (0.1248) (0.0938) (0.0884)
[0.1441] [0.1371] [0.0983] [0.0943]

Note: Observations n = 49 or 98, β1 = β2 = γ1 = 1, and γ2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 4: Estimates from spatial weight matrices with medium endogeneity (large sample)

ρ = 0.5 WA(n=361) WC(n=361)
λ = 0.2 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.0168 0.2004 0.0853 0.1976 0.0935 0.2002 0.1441 0.1970
(0.0933) (0.0698) (0.0567) (0.0465) (0.0772) (0.0580) (0.0426) (0.0359)
[0.0806] [0.0694] [0.0536] [0.0468] [0.0710] [0.0562] [0.0431] [0.0352]

β̂1 1.2419 1.0012 1.1520 1.0048 1.1426 1.0016 1.0756 1.0057
(0.1330) (0.1059) (0.0907) (0.0805) (0.1150) (0.0932) (0.0770) (0.0708)
[0.1235] [0.1034] [0.0901] [0.0781] [0.1109] [0.0902] [0.0780] [0.0683]

β̂2 0.9748 1.0001 0.9851 1.0005 0.9855 0.9998 0.9934 1.0003
(0.0566) (0.0563) (0.0553) (0.0555) (0.0568) (0.0560) (0.0554) (0.0554)
[0.0575] [0.0563] [0.0551] [0.0554] [0.0570] [0.0560] [0.0552] [0.0553]

γ̂1 0.9976 0.9976 0.9976 0.9976
(0.0528) (0.0527) (0.0528) (0.0527)
[0.0542] [0.0542] [0.0542] [0.0542]

γ̂2 0.8009 0.8009 0.8009 0.8009
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0560] [0.0560] [0.0560] [0.0560]

δ̂ 0.5000 0.4992 0.4998 0.4991
(0.0479) (0.0464) (0.0464) (0.0457)
[0.0498] [0.0484] [0.0478] [0.0472]

λ = 0.4

λ̂ 0.2264 0.3998 0.2993 0.3966 0.3065 0.3997 0.3574 0.3969
(0.0899) (0.0646) (0.0521) (0.0420) (0.0687) (0.0496) (0.0360) (0.0302)
[0.0781] [0.0642] [0.0505] [0.0423] [0.0631] [0.0481] [0.0366] [0.0296]

β̂1 1.3050 1.0019 1.1774 1.0075 1.1658 1.0024 1.0764 1.0071
(0.1657) (0.1248) (0.1050) (0.0902) (0.1320) (0.1018) (0.0823) (0.0746)
[0.1523] [0.1223] [0.1052] [0.0882] [0.1261] [0.0987] [0.0831] [0.0719]

β̂2 0.9882 1.0001 0.9941 1.0006 0.9989 0.9998 1.0005 1.0008
(0.0565) (0.0557) (0.0554) (0.0553) (0.0567) (0.0555) (0.0556) (0.0552)
[0.0563] [0.0556] [0.0550] [0.0552] [0.0556] [0.0553] [0.0551] [0.0551]

γ̂1 0.9976 0.9976 0.9976 0.9976
(0.0528) (0.0527) (0.0528) (0.0527)
[0.0542] [0.0542] [0.0542] [0.0542]

γ̂2 0.8009 0.8009 0.8009 0.8009
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0560] [0.0560] [0.0560] [0.0560]

δ̂ 0.4999 0.4992 0.4997 0.4994
(0.0469) (0.0459) (0.0459) (0.0455)
[0.0487] [0.0478] [0.0474] [0.0470]

Note: Observations n = 361, β1 = β2 = γ1 = 1, and γ2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 5: Estimates from spatial weight matrices with strong endogeneity (small sample)

ρ = 0.8 WS(n=49) WO(n=98)
λ = 0.2 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ −0.0469 0.2002 0.0152 0.1921 −0.1427 0.1913 −0.0345 0.1917
(0.2525) (0.1309) (0.1400) (0.0830) (0.2193) (0.1021) (0.1191) (0.0667)
[0.2206] [0.1377] [0.1289] [0.0881] [01797] [0.1066] [0.1066] [0.0690]

β̂1 1.3325 0.9968 1.2506 1.0092 1.4673 1.0140 1.3194 1.0133
(0.3728) (0.2332) (0.2352) (0.1814) (0.3133) (0.1729) (0.1880) (0.1353)
[0.3428] [0.2340] [0.2416] [0.1807] [0.2915] [0.1779] [0.1991] [0.1394]

β̂2 0.9436 0.9934 0.9642 0.9955 0.8974 0.9913 0.9319 0.9931
(0.1594) (0.1581) (0.1484) (0.1515) (0.1176) (0.1145) (0.1083) (0.1104)
[0.1668] [0.1607] [0.1564] [0.1583] [0.1302] [0.1179] [0.1169] [0.1166]

γ̂1 1.0015 1.0028 1.0024 1.0024
(0.1427) (0.1398) (0.1015) (0.1005)
[0.1418] [0.1450] [0.1028] [0.1029]

γ̂2 0.7982 0.7983 0.7999 0.7999
(0.1542) (0.1511) (0.1104) (0.1093)
[0.1582] [0.1588] [0.1149] [0.1149]

δ̂ 0.8047 0.8011 0.7985 0.7978
(0.0960) (0.0876) (0.0676) (0.0628)
[0.1025] [0.0954] [0.0705] [0.0664]

λ = 0.4 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.1543 0.3983 0.2281 0.3885 0.0636 0.3905 0.1898 0.3900
(0.2530) (0.1247) (0.1320) (0.0765) (0.2219) (0.0965) (0.1121) (0.0611)
[0.2274] [0.1323] [0.1278] [0.0820] [0.1862] [0.1017] [0.1066] [0.0640]

β̂1 1.4404 0.9998 1.3104 1.0181 1.6052 1.0194 1.3778 1.0200
(0.4826) (0.2726) (0.2777) (0.1990) (0.4105) (0.2017) (0.2233) (0.1487)
[0.4471] [0.2793] [0.2902] [0.2013] [0.3791] [0.2104] [0.2393] [0.1547]

β̂2 0.9603 0.9931 0.9784 0.9959 0.9173 0.9915 0.9501 0.9932
(0.1606) (0.1570) (0.1499) (0.1509) (0.1178) (0.1130) (0.1089) (0.1097)
[0.1654] [0.1596] [0.1562] [0.1579] [0.1285] [0.1167] [0.1162] [0.1157]

γ̂1 1.0015 1.0011 1.0024 1.0024
(0.0933) (0.1398) (0.1015) (0.1005)
[0.1418] [0.1427] [0.1028] [0.1029]

γ̂2 0.7982 0.7987 0.7999 0.7998
(0.1427) (0.1510) (0.1104) (0.1093)
[0.1582] [0.1587] [0.1149] [0.1150]

δ̂ 0.8044 0.8008 0.7988 0.7980
(0.1542) (0.0863) (0.0652) (0.0616)
[0.0989] [0.0934] [0.0680] [0.0651]

Note: Observations n = 49 or 98, β1 = β2 = γ1 = 1, and γ2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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Table 6: Estimates from spatial weight matrices with strong endogeneity (large sample)

ρ = 0.8 WA(n=361) WC(n=361)
λ = 0.2 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ −0.0712 0.2009 0.0047 0.1988 0.0386 0.2005 0.1039 0.1985
(0.0944) (0.0453) (0.0576) (0.0325) (0.0792) (0.0383) (0.0435) (0.0257)
[0.0765] [0.0435] [0.0528] [0.0316] [0.0697] [0.0362] [0.0443] [0.0254]

β̂1 1.3579 1.0005 1.2580 1.0033 1.2153 1.0011 1.1288 1.0037
(0.1340) (0.0797) (0.0914) (0.0677) (0.1174) (0.0733) (0.0778) (0.0626)
[0.1231] [0.0752] [0.0931] [0.0641] [0.1111] [0.0692] [0.0810] [0.0603]

β̂2 0.9509 1.0011 0.9657 1.0010 0.9732 1.0009 0.9851 1.0009
(0.0562) (0.0561) (0.0546) (0.0555) (0.0571) (0.0558) (0.0553) (0.0554)
[0.0589] [0.0557] [0.0555] [0.0553] [0.0579] [0.0556] [0.0554] [0.0553]

γ̂1 0.9991 0.9991 0.9991 0.9991
(0.0528) (0.0526) (0.0528) (0.0526)
[0.0532] [0.0532] [0.0532] [0.0532]

γ̂2 0.8014 0.8014 0.8014 0.8014
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0562] [0.0562] [0.0562] [0.0562]

δ̂ 0.7993 0.7986 0.7992 0.7986
(0.0336) (0.0325) (0.0322) (0.0317)
[0.0339] [0.0327] [0.0322] [0.0319]

λ = 0.4 IV 2SIV SAR MLE IV 2SIV SAR MLE

λ̂ 0.1408 0.4006 0.2344 0.3983 0.2576 0.4002 0.3323 0.3985
(0.0929) (0.0421) (0.0539) (0.0296) (0.0720) (0.0328) (0.0370) (0.0217)
[0.0762] [0.0404] [0.0517] [0.0290] [0.0631] [0.0310] [0.0376] [0.0217]

β̂1 1.4552 1.0006 1.2912 1.0046 1.2516 1.0014 1.1205 1.0035
(0.1706) (0.0907) (0.1075) (0.0738) (0.1375) (0.0782) (0.0837) (0.0649)
[0.1539] [0.0856] [0.1104] [0.0700] [0.1278] [0.0738] [0.0858] [0.0650]

β̂2 0.9720 1.0010 0.9832 1.0010 0.9948 1.0008 0.9986 1.0007
(0.0565) (0.0556) (0.0551) (0.0553) (0.0572) (0.0555) (0.0556) (0.0552)
[0.0576] [0.0553] [0.0553] [0.0551] [0.0561] [0.0552] [0.0551] [0.0573]

γ̂1 0.9991 0.9991 0.9991 0.9977
(0.0528) (0.0526) (0.0528) (0.0527)
[0.0532] [0.0532] [0.0532] [0.0610]

γ̂2 0.8014 0.8014 0.8014 0.8011
(0.0555) (0.0553) (0.0555) (0.0553)
[0.0562] [0.0562] [0.0562] [0.0591]

δ̂ 0.7992 0.7986 0.7991 0.7985
(0.0326) (0.0320) (0.0318) (0.0315)
[0.0329] [0.0321] [0.0318] [0.0329]

Note: Observations n = 361, β1 = β2 = γ1 = 1, and γ2 = 0.8. Estimated standard error based on an
asymptotic variance-covariance matrix is in parentheses; and empirical standard deviation is in brackets.
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The simulation results are summarized as follows.

1. For the biases of parameter estimators, our 2SIV and MLE estimators have very small biases in all

cases. For conventional IV and SAR estimators, the higher the degree of endogeneity is, i.e., the larger

the correlation coefficient ρ is, the larger the bias of estimator is. The biases for estimators of the

spatial correlation λ̂ are, in general, much higher than those for β. λ̂ from IV and SAR suffers severe

downward bias when ρ = 0.5 or 0.8, in some cases with bias exceeding 100%. The conventional IV

performs much worse than the conventional SAR.

2. For the variances of parameter estimators, we provide both the empirical standard deviation based

on 1000 replications and the mean of estimated standard error based on the asymptotic variance-

covariance matrix. From Tables 1-6, we can see that these two values are very close in all cases.

Comparing variances of estimators from different estimation methods, we can see that IV is close to

2SIV and SAR is close to MLE. It seems that estimators based on the likelihood estimation method

have smaller variances than those based on the IV methods.

3. The biases of IV and SAR estimators vary with the spatial correlation λ. When true λ = 0.2, λ̂ from

the IV and SAR have large biases relative to its true value than when λ = 0.4. It seems that the

conventional methods produce even more severe bias in the situation of weak spatial correlation.

4. Comparing Table 1 to Table 2, Table 3 to Table 4, and Table 5 to Table 6, as sample size increases

while the number of neighbors for each agent grows at a slower rate, the bias and standard error of

estimators decrease.

7 Conclusion

In this paper, we consider the specification and estimation of a cross-sectional SAR model with an endogenous

spatial weight matrix. First, we specify two sets of equations: one is for the SAR outcome, and the other is for

entries of the spatial weight matrix. The source of endogeneity is the correlation between the disturbances in

the SAR outcome equation and the errors in the spatial weight entry equation. Second, under the conditional

moment assumptions on disturbances, we propose three estimation methods: 2SIV, QMLE, and GMM. We

consider two types of spatial weight matrices: one is sparse and another one has its entries decreasing

sufficiently fast as the physical distance increases. By employing the theory of asymptotic inference under

near-epoch dependence, we prove the consistency and asymptotic normality of these three estimators. In

generalized 2SIV, we also provide the optimal choice for IV matrices.

To examine the behavior of our proposed estimators in finite samples, we conduct a Monte Carlo sim-

ulation study. The simulation results indicate that the commonly used estimates under exogenous weight

matrix suffer serious downward bias when the true weight matrix is endogenous. On the other hand, our
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estimates have good finite sample properties. As sample size increases and the number of neighbors grows

more slowly, our estimates quickly converge to true parameters.

This paper focuses on estimating a cross-sectional SAR model with a specified source of endogeneity for

the spatial weight matrix. In future research, we may extend our cross-sectional model to a spatial panel

data setting where the spatial weight matrix varies over time due to changing economic conditions. Another

issue that needs future research is to consider an endogenous spatial weight matrix purely constructed with

economic distances. This could be a technical challenging issue as the near-epoch assumption may not be

met. Thus alternative large sample theorems may need to be developed.
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Appendices

A Expressions related to the statistics

A.1 First order derivatives and the expectation of the log quasi-likelihood func-

tion

The expectation of the log quasi-likelihood function in (3.4) is

1

n
E(lnLn(θ)) = − ln(2π)− 1

2
ln(σ2

ξ )− 1

2
ln |Σε|+

1

n
E(ln |Sn(λ)|)− 1

2
tr(Σ−1

ε Σε0)

− 1

2n

n∑
i=1

x′2,in(Γ0 − Γ)Σ−1
ε (Γ0 − Γ)′x2,in −

1

2n

σ2
ξ0

σ2
ξ

E[tr(S−1′
n Sn(λ)′Sn(λ)S−1

n )]

− 1

2σ2
ξ

((λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′)H1n((λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′)′,
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where H1n = 1
nE[(Gn(X1nβ0 + εnδ0), X1n, X2n, εn)′(Gn(X1nβ0 + εnδ0), X1n, X2n, εn)].

The first order derivatives are

∂ lnLn(θ)

∂λ
=

1

σ2
ξ

(WnYn)′ξn(θ)− tr[WnS
−1
n (λ)];

∂ lnLn(θ)

∂β
=

1

σ2
ξ

X ′1nξn(θ);

∂ lnLn(θ)

vec(Γ)
= (Σ−1

ε ⊗X ′2n)vec(Zn −X2nΓ)− 1

σ2
ξ

δ ⊗ (X ′2nξn(θ));

∂ lnLn(θ)

∂σ2
ξ

= − n

2σ2
ξ

+
1

2σ4
ξ

ξn(θ)′ξn(θ);
∂ lnLn(θ)

∂δ
=

1

σ2
ξ

εn(θ)′ξn(θ);

∂ lnLn(θ)

∂α
= −n

2

∂ ln |Σε|
∂α

− 1

2

∂

∂α
tr[Σ−1

ε εn(Γ)′εn(Γ)],

where ξn(θ) = Sn(λ)Yn −X1nβ − (Zn −X2nΓ)δ and εn(Γ) = Zn −X2nΓ. As α is a J-dimensional column

vector of distinct elements in Σε, the J-dimensional vector ∂ ln |Σε|
∂α has the jth element tr(Σ−1

ε
∂Σε
∂αj

) and

∂
∂α tr[Σ

−1
ε εn(Γ)′εn(Γ)] has its jth element −tr

(
Σ−1
ε

∂Σε
∂αj

Σ−1
ε εn(Γ)′εn(Γ)

)
for j = 1, ..., J .

A.2 Second order derivatives and the variance-covariance matrix

The second order derivatives are

∂2 lnLn(θ)

∂λ∂λ
= −tr[WnS

−1
n (λ)]2 − 1

σ2
ξ

(WnYn)′WnYn;
∂2 lnLn(θ)

∂λ∂σ2
ξ

= − 1

σ4
ξ

(WnYn)′ξn(θ);

∂2 lnLn(θ)

∂λ∂β
= − 1

σ2
ξ

X ′1nWnYn;
∂2 lnLn(θ)

∂λvec(Γ)
=

1

σ2
ξ

δ ⊗ (X ′2nWnYn);
∂2 lnLn(θ)

∂λ∂α
= 0;

∂2 lnLn(θ)

∂λ∂δ
= − 1

σ2
ξ

εn(Γ)′(WnYn);
∂2 lnLn(θ)

∂β∂β′
= − 1

σ2
ξ

X ′1nX1n;

∂2 lnLn(θ)

∂β∂vec(Γ)′
=

1

σ2
ξ

δ ⊗ (X ′2nX1n);
∂2 lnLn(θ)

∂β∂α′
= 0;

∂2 lnLn(θ)

∂β∂δ′
= − 1

σ2
ξ

X ′1nεn(Γ);

∂2 lnLn(θ)

∂β∂σ2
ξ

= − 1

σ4
ξ

X ′1nξn(θ);
∂2 lnLn(θ)

∂vec(Γ)∂vec(Γ)′
= −Σ−1

ε ⊗ (X ′2nX2n)− 1

σ2
ξ

δδ′ ⊗ (X ′2nX2n);

∂2 lnLn(θ)

∂vec(Γ)∂σ2
ξ

=
1

σ4
ξ

δ ⊗ (X ′2nξn(θ));
∂2 lnLn(θ)

∂vec(Γ)∂α′
= [Ip2 ⊗ (X ′2nεn(Γ))]
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ε )
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;

∂2 lnLn(θ)

∂δ∂vec(Γ)′
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σ2
ξ

Ip2 ⊗ (X ′2nξn(θ)) +
1

σ2
ξ

δ ⊗ (X ′2nεn(Γ));
∂2 lnLn(θ)

∂σ2
ξ∂α
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∂2 lnLn(θ)

∂σ2
ξ∂σ

2
ξ

=
n

2σ4
ξ

− 1

σ6
ξ

ξn(θ)′ξn(θ);
∂2 lnLn(θ)

∂σ2
ξ∂δ

= − 1

σ4
ξ

εn(θ)′ξn(θ);
∂2 lnLn(θ)

∂α∂δ′
= 0;

∂2 lnLn(θ)

∂δ∂δ′
= − 1

σ2
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εn(θ)′εn(θ);
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∂2 ln |Σε|
∂α∂α′

− 1

2

∂2

∂α∂α′
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where ∂2 ln |Σε|
∂α∂α′ is a J × J matrix with the (j, k)th element ∂2 ln |Σε|

∂αj∂αk
= −tr(Σ−1

ε
∂Σε
∂αk

Σ−1
ε

∂Σε
∂αj

) and the (j, k)th

element of ∂2

∂α∂α′ tr[Σ
−1
ε εn(Γ)′εn(Γ)] is

∂2

∂αj∂αk
tr[Σ−1

ε εn(Γ)′εn(Γ)] = tr

(
Σ−1
ε (

∂Σε
∂αk

Σ−1
ε

∂Σε
∂αj

+
∂Σε
∂αj

Σ−1
ε

∂Σε
∂αk

)Σ−1
ε εn(Γ)′εn(Γ)

)
for j, k = 1, ..., J . Therefore,

E

(
∂2 lnLn(θ0)

∂θ∂θ′

)
=

1

σ2
ξ0



Iλλ I ′λβ I ′λΓ −E[tr(Gn)] 0 I ′λδ
∗ −X ′1nX1n δ′0 ⊗ (X ′1nX2n) 0 0 0

∗ ∗ IΓΓ 0 0 0

∗ 0 0 − n
2σ2
ξ0

0 0

0 0 0 0 Iαα 0

∗ 0 0 0 0 −nΣε0


,

with

Iλλ = −σ2
ξ0tr[E(G2

n +GnG
′
n)]− E[(X1nβ0 + εnδ0)′G′n(X1nβ0 + εnδ0)];

Iλβ = −X ′1nE(GnX1nβ0 +Gnεnδ0); IλΓ = δ0 ⊗ [X ′2nE(GnX1nβ0 +Gnεnδ0)];

Iλδ = −E[ε′nGn(X1nβ0 + εnδ0)]; IΓΓ = −(σ2
ξ0Σ−1

ε0 + δ0δ
′
0)⊗ (X ′2nX2n);

(Iαα)kj = −
nσ2

ξ0

2
tr(Σ−1

ε0

∂Σε0
∂αk

Σ−1
ε0

∂Σε0
∂αj

) for j, k = 1, ..., J.

And

E
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∂ lnLn(θ0)

∂θ

∂ lnLn(θ0)

∂θ′

)
= −E

(
∂2 lnLn(θ0)

∂θ∂θ′

)
+ ΩML

θ0 ,

where

ΩML
θ0 =

1

σ4
ξ0


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n∑
i=1

E(ξ3
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2σ2
ξ0
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i,n)x′1,in 0 0

∗ ∗ 0 − δ0
2σ2
ξ0
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i=1

E(ξ3
i,n)x′2,in RΓα 0

∗ ∗ ∗ n
4σ4
ξ0
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2σ2
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E(ξ3
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with

Rλλ =

n∑
i=1

E[2ξ3
i,nGin(X1nβ0 + εnδ0)Gii,n +G2

ii,n(ξ4
i,n − 3σ4

ξ0)];

Rλβ =

n∑
i=1

E(ξ3
i,nGii,n)x′1,in; RλΓ = −δ0
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i=1

E(ξ3
i,nGii,n)x′2,in;
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σ4
ξ0
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[l′n ⊗ E(ε′i,nΣ−1

ε0

∂Σε0
∂αj

Σ−1
ε0 εi,nΣ−1

ε0 εi,n)⊗ Ik2 ]vec(X ′2n);

(Rαα)kj =
nσ4

ξ0
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[E(ε′i,nΣ−1

ε0

∂Σε0
∂αj

Σ−1
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∂Σε0
∂αk

Σ−1
ε0 εi,n)− tr(Σ−1

ε0

∂Σε0
∂αj

)tr(Σ−1
ε0

∂Σε0
∂αk

)

−2tr(Σ−1
ε0

∂Σε0
∂αk
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ε0

∂Σε0
∂αj

)];

Rλξ =
1

2σ2
ξ0

n∑
i=1

{E[ξ3
i,nl
′
nGn(X1nβ0 + εnδ0)] + E[(ξ4

i,n − 3σ4
ξ0)Gii,n]}.

B Some basic properties of NED of random fields

In the following proofs, we will adopt asymptotic inference under near-epoch dependence and let ςn = (εn, ξn)

be the basis for NED processes. The following claims are some basic results. The first Claim B.1 is due to

the topological structure in Assumption 1. The other claims are some basic properties for NED processes.

Claim B.1 For any distance ρ, there are at most c5ρ
d0 points in Bi(ρ) and at most c4ρ

d0−1 points in the

space Bi(ρ+ 1)\Bi(ρ), where c4 and c5 are positive constants.

Claim B.1 is directly from Jenish and Prucha (2012).10

Claim B.2 For any random field T = {Ti,n, i ∈ Dn, n ≥ 1} with ||Ti,n||p <∞, ||Ti,n − E(Ti,n|Fi,n(s))||p ≤
2||Ti,n||p with p ≥ 1.

This result follows from the Minkowski and the conditional Jensen inequalities: ||Ti,n−E(Ti,n|Fi,n(s))||p ≤
||Ti,n||p + ||E(Ti,n|Fi,n(s))||p ≤ 2||Ti,n||p.

Claim B.3 If ||t1i,n − E(t1i,n|Fi,n(s))||4 ≤ C1ϕ1(s) and ||t2i,n − E(t2i,n|Fi,n(s))||4 ≤ C2ϕ2(s), with

max(||t1i,n||4, ||t2i,n||4) ≤ C, then ||t1i,nt2i,n − E(t1i,nt2i,n|Fi,n(s))||2 ≤ C(C1 + C2)ϕ(s), where ϕ(s) =

max(ϕ1(s), ϕ2(s)).

10These two results are special cases of those in Jenish and Prucha (2012) where the base random field can be spatial mixing
processes. Here we have the base being i.i.d. variables for simplicity, which is sufficient for our model.
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Proof of Claim B.3. For the product of t1i,nt2i,n,

||t1i,nt2i,n − E(t1i,nt2i,n|Fi,n(s))||2 ≤ ||t1i,nt2i,n − E(t1i,n|Fi,n(s))E(t2i,n|Fi,n(s))||2
≤ ||t2i,n[t1i,n − E(t1i,n|Fi,n(s))]||2 + ||E(t1i,n|Fi,n(s))[t2i,n − E(t2i,n|Fi,n(s))]||2
≤ ||t2i,n||4 · ||t1i,n − E(t1i,n|Fi,n(s))||4 + ||t1i,n||4 · ||t2i,n − E(t2i,n|Fi,n(s))||4
≤ C(C1ϕ1(s) + C2ϕ2(s)) ≤ C(C1 + C2) max(ϕ1(s), ϕ2(s)).

The third inequality follows from the Hölder’s inequality.

From Jenish and Prucha (2012), we have the following two Claims for LLN and CLT under NED.

Claim B.4 Under Assumption 1, if the random field {Ti,n, i ∈ Dn, n ≥ 1} is L1-NED, the base {ςi,n}’s are

i.i.d., and {Ti,n}’s are uniformly Lp bounded for some p > 1, then 1
n

∑n
i=1(Ti,n − ETi,n)

L1→ 0.

Claim B.5 Let {Ti,n, i ∈ Dn, n ≥ 1} be a random field that is L2-NED on an i.i.d. random field ς. If

Assumption 1 and the following conditions are met:

(1) {Ti,n, i ∈ Dn, n ≥ 1} is uniformly L2+δ-bounded for some δ > 0,

(2) infn
1
nσ

2
n > 0 where σ2

n = V ar(
∑n
i=1 Ti,n),

(3) NED coefficients satisfy
∑∞
r=1 r

d0−1ϕ(r) <∞,
(4) NED scaling factors satisfy supn,i∈D di,n <∞,

then σ−1
n

∑n
i=1(Ti,n − ETi,n)

d→ N(0, 1).

C Proofs of NED Properties for Relevant Statistics

C.1 NED properties in Case 1 under Assumption 4.1)

Claim C.1.1 Under Assumptions 1, 3.1), and 4.1), supn ||Wn||1 <∞.11

Proof of Claim C.1.1. For any i, divide the whole space D into subsets Bi(ρ + 1)\Bi(ρ), ρ =

1, 2, ...., and Bi(1). Under Assumption 4.1), 0 ≤ wij,n ≤ c1ρ
−c3d0
ij . Then wji,n ≤ c1ρ

−c3d0 for any

j ∈ Bi(ρ + 1)\Bi(ρ) with ρ ≥ 1. There are at most c4ρ
d0−1 points in Bi(ρ + 1)\Bi(ρ). Therefore,∑

j∈Bi(ρ+1)\Bi(ρ) wji,n ≤ c4c1ρ
(1−c3)d0−1. For the special case of Bi(1), as wii,n = 0, it must be ρij = 1

from Assumption 1 and hence, wji,n ≤ c1. Since Dn ⊂ D = Bi(1)
⋃(
∪∞ρ=1Bi(ρ+ 1)\Bi(ρ)

)
, we have∑n

j=1 wji,n =
∑∞
ρ=0

∑
j∈Bi(ρ+1)\Bi(ρ) wji,n ≤ c4c1

(
1 +

∑∞
ρ=1 ρ

(1−c3)d0−1
)
<∞ when c3 > 1.

Claim C.1.2 Under Assumptions 1, 3.1), and 4.1), for any n and positive integer q, ||W q
n ||1 ≤ (q −

1)cuKc
q−1
w + cuc

q−1
w ≤ qcuKcq−1

w , where cu = supn ||Wn||1 and cw = supn ||Wn||∞.

11For this claim, it is sufficient to have c3 > 1 in Assumption 4.1) instead of the larger c3.
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Proof of Claim C.1.2. Denote an index set Vn with cw ≤
∑n
j=1 wji,n < cu if i ∈ Vn and

∑n
j=1 wji,n < cw

if i /∈ Vn. Then Assumption 3.4.1) constrains that |Vn| ≤ K for any n. Consider the kth column sum of W q
n ,

i.e., e′nW
q
nek,n, where en = (1, ..., 1)′ and ek,n is the unit column vector with one in its kth entry and zeros

in its other entries. As In =
∑n
i=1 ei,ne

′
i,n,

e′nW
q
nek,n =

n∑
i=1

e′nWnei,ne
′
i,nW

q−1
n ek,n =

∑
i∈Vn

e′nWnei,ne
′
i,nW

q−1
n ek,n +

∑
i/∈Vn

e′nWnei,ne
′
i,nW

q−1
n ek,n

≤ K

(
max
i∈Vn

e′nWnei,n

)(
max
i∈Vn

e′i,nW
q−1
n ek,n

)
+

(
max
i/∈Vn

e′nWnei,n

) ∑
i/∈Vn

e′i,nW
q−1
n ek,n

≤ Kcu||W q−1
n ||∞ + cw||W q−1

n ||1 ≤ Kcucq−1
w + cw||W q−1

n ||1

As this inequality holds for any k = 1, ..., n, we have ||W q
n ||1 ≤ cuKc

q−1
w + cw||W q−1

n ||1. By deduction, we

have ||W q
n ||1 ≤ (q − 1)cuKc

q−1
w + cuc

q−1
w ≤ qcuKcq−1

w .

Claim C.1.3 Under Assumptions 1, 3.1), 3.2), and 4.1), supλ∈Λ ||Gn(λ)||∞ <∞ and supλ∈Λ ||Gn(λ)||1 <
∞.

Proof of Claim C.1.3. As Gn(λ) =
∑∞
l=0 λ

lW l+1
n and ||W l+1

n ||∞ ≤ ||Wn||l+1
∞ , we have

sup
λ∈Λ
||Gn(λ)||∞ ≤

∞∑
l=0

sup
λ∈Λ
|λ|l||W l+1

n ||∞ ≤ cw
∞∑
l=0

sup
λ∈Λ
|λcw|l <∞.

From Claim C.1.2, ||W l+1
n ||1 ≤ cuK(l + 1)cw

l, and hence,

sup
λ∈Λ
||Gn(λ)||1 ≤

∞∑
l=0

sup
λ∈Λ
|λ|l||W l+1

n ||1 ≤ cuK
∞∑
l=0

(l + 1) sup
λ∈Λ
|λcw|l <∞.

Claim C.1.4 Suppose W is an n × n square matrix which can be decomposed into the sum of two n × n
matrices such that W = A+B. Denote |A|max = max{|aij | : i, j = 1, ..., n}. Then for any positive integer k

and any i, j = 1, ..., n,

(W k −Bk)ij ≤ |A|max

k−1∑
m=0

||B||m∞ · ||W k−1−m||1.

Proof of Claim C.1.4. By expansion, W k−Bk =
∑k−1
m=0B

mAW k−1−m. Denote ein = (0, ...0, 1, 0, ..., 0)′,

which is the ith unit vector of order n, then (W k −Bk)ij =
∑k−1
m=0 e

′
inB

mAW k−1−mejn. For any matrix M

and vector e of dimension n, it is easy to see that ||Me||∞ ≤ |M |max||e||1. Thus, for any integerm = 0, ..., k−1,

e′inB
mAW k−1−mejn ≤ ||B′mein||1 · ||AW k−1−mejn||∞ ≤ ||Bm||∞ · |AW k−1−m|max

≤ |A|max · ||Bm||∞ · ||W k−1−m||1.

31



Together, we have the result.

Claim C.1.5 For any α > 0 and s ≥ 2,
∑
ρ=[s] ρ

−α−1 < 3α

α s
−α, where [s] denotes the largest integer less

than or equal to s.

Proof of Claim C.1.5. For any ρ0 ≥ 2,

ρ−α0

α
=

∫ ∞
ρ0

x−α−1dx <
∑
ρ=ρ0

ρ−α−1 <

∫ ∞
ρ0−1

x−α−1dx =
(ρ0 − 1)−α

α
≤ 2αρ−α0

α
.

The last inequality holds because ρ0 − 1 ≥ ρ0/2 and hence (ρ0 − 1)−α ≤ 2αρ−α0 . Therefore, we can find a

positive constant 1/α < cα1 < 2α/α such that
∑
ρ=ρ0

ρ−α−1 = cα1ρ
−α
0 . Now with 1 ≤ s/[s] < 1 + (s −

[s])/[s] < 3/2, there exists a constant 1 < cα2 < (3/2)α such that cα2s
−α = [s]−α. Together, we have∑

ρ=[s] ρ
−α−1 = cα1cα2s

−α < (3α/α)s−α.

Claim C.1.6 Let ti,n(m) be the ith element of the vector Wm
n ς
∗
na, where ς∗i,n = fi(ςi,n, Xn) with ςn = (εn, ξn)

is a vector-valued function and a is any conformable vector of constants. Under Assumptions 1, 3.1), and

4.1), suppose supi,n ||ς∗i,n||p <∞, then supi,n ||ti,n(m)||p ≤ mc3d0+2cmwCap and

supi,n ||ti,n(m)− E(ti,n(m)|Fi,n(s))||p ≤ Capcmwm3+c3d0s(2−c3)d0 with Cap being a finite constant.

Proof of Claim C.1.6. First we show that ||ti,n(m)− E(ti,n(m)|Fi,n(s))||p ≤ Capcmwm3+c3d0s(2−c3)d0 for

any i and n. Note that for any integer 1 ≤ k ≤ m and ik /∈ Bi(s), we can show that

(W k
n )iik ≤ C0m

c3d0+2ckwρ
−c3d0
iik

and
∑

ik /∈Bi(s)

(W k
n )iik ≤ C1c

k
wm

c3d0+2s(1−c3)d0 (C.1)

with C0 and C1 being positive constants, not depend on k. To show this, we construct two matrices An

and Bn as follows: aij,n = wij,nI(wij,n ≤ c1(ρiik/m)−c3d0) and bij,n = wij,nI(wij,n > c1(ρiik/m)−c3d0), then

Wn = An + Bn and aij,nbij,n = 0. As ik /∈ Bi(s), at least one of the items wii1,n, wi1i2,n, · · · , wik−1ik,n,

say wiq−1iq,n, satisfies that wiq−1iq,n ≤ c1(ρiik/k)−c3d0 ≤ c1(ρiik/m)−c3d0 , because there exist at least two

neighboring nodes in the chain i → i1 → · · · → ik such that their distance is at least ρiik/k. Hence,

(Bkn)iik =
∑
i1
· · ·
∑
i(k−1)

wii1,nwi1i2,n · · ·wi(k−1)ik,nI(all w’s> c1(ρiik/m)−c3d0) = 0, and we have

(W k
n )iik = (W k

n −Bkn)iik ≤ |An|max

k−1∑
q=0

||Bn||q∞||W k−1−q
n ||1 ≤ c1(

ρiik
m

)−c3d0
k−1∑
q=0

cqw(k − 1− q)Kcuck−q−2
w

≤ Kcuc1(ρiik/m)−c3d0k2ck−2
w ≤ C0m

c3d0+2ckwρ
−c3d0
iik

,
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where the first inequality is from Claim C.1.4; the second one is from Claim C.1.2 and all elements in An

are ≤ c1(ρiik/m)−c3d0 . And hence, for any i,

∑
ik /∈Bi(s)

(W k
n )iik ≤ C0m

c3d0+2ckw
∑

ik /∈Bi(s)

ρ−c3d0iik
≤ C0m

c3d0+2ckwc4

∞∑
ρ=[s]

ρ(1−c3)d0−1 ≤ C1c
k
wm

c3d0+2s(1−c3)d0 .

The last inequality is from Claim C.1.5.

Any chain of Wm
n starting from i in ti,n(m) involves m steps. We can divide these chains into two sets:

one set has all its paths staying within Bi(s), and the other set has some paths falling outside of Bi(s). For

the first set with all nodes in Bi(s), obviously ti,n(m) − E(ti,n(m)|Fi,n(s)) = 0. For the second set, divide

it into m mutually exclusive subsets:

(i)
∑
im /∈Bi(s)(W

m
n )iimς

∗
im,n

a;

(ii)
∑
im−1 /∈Bi(s)

∑
im∈Bi(s)(W

m−1
n )iim−1

wim−1im,nς
∗
im,n

a; etc.

Such subset can be written as
∑
im−k /∈Bi(s)

∑
im−k+1∈Bi(s) · · ·

∑
im∈Bi(s)(W

m−k
n )iim−kwim−kim−k+1

· · ·wim−1im,nς
∗
im,n

a

for k = 0, ...m− 1.

Consider (i): As

|
∑

im /∈Bi(s)

(Wm
n )iimς

∗
im,na| ≤

∑
im /∈Bi(s)

(Wm
n )iim |ς∗im,na| ≤

∑
im /∈Bi(s)

|ς∗im,na|C0m
c3d0+2cmw ρ

−c3d0
iim

,

we have

||
∑

im /∈Bi(s)

(Wm
n )iimς

∗
im,na||p ≤ capC0m

c3d0+2cmw

∞∑
ρ=[s]

c4ρ
(1−c3)d0−1 ≤ C2capm

c3d0+2cmw s
(1−c3)d0 , (C.2)

where cap = (E|ςim,na|p)1/p for any im and n. For (ii),

|
∑

im−1 /∈Bi(s)

∑
im∈Bi(s)

(Wm−1
n )iim−1

wim−1im,n| ≤ ||Wn||∞
∑

im−1 /∈Bi(s)

(Wm−1
n )iim−1

≤ cmwmc3d0+2s(1−c3)d0C1,

and hence,

||
∑

im−1 /∈Bi(s)

∑
im∈Bi(s)

(Wm−1
n )iim−1wim−1im,nς

∗
im,na||p ≤ C1c

m
wm

c3d0+2s(1−c3)d0
∑

im∈Bi(s)

cap

≤ C1c
m
wm

c3d0+2s(1−c3)d0c5s
d0cap ≤ C3c

m
wm

c3d0+2s(2−c3)d0cap by (C.1).
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And similarly, for subset (k) with im−k /∈ Bi(s) where 1 ≤ k ≤ m− 1, we have∑
im−k /∈Bi(s)

∑
im−k+1∈Bi(s)

· · ·
∑

im∈Bi(s)

(Wm−k
n )iim−kwim−kim−k+1

· · ·wim−1im,n ≤ ||W k
n ||∞

∑
im−k /∈Bi(s)

(Wm−k
n )iim−k

≤ cmwmc3d0+2s(1−c3)d0C1, because ||W k
n ||∞ ≤ ckw.

Hence,

||
∑

im−k /∈Bi(s)

∑
im−k+1∈Bi(s)

· · ·
∑

im∈Bi(s)

(Wm−k
n )iim−kwim−kim−k+1

· · ·wim−1im,nς
∗
im,na||p ≤ C3c

m
wm

c3d0+2s(2−c3)d0cap.

These together imply

||ti,n(m)− E(ti,n(m)|Fi,n(s))||p ≤ 2||summation of paths in ti,n(m) with at least one node im−k /∈ Bi(s)||p

≤ 2

(
C2m

c3d0+2cmw s
(1−c3)d0cap + C3

m−1∑
k=1

cmwm
c3d0+2s(2−c3)d0cap

)
≤ cmwmc3d0+3s(2−c3)d0Cap.

To conclude, for any integer m, ||ti,n(m)−E(ti,n(m)|Fi,n(s))||p ≤ Capcmwm3+c3d0ϕ(s) with ϕ(s) = s(2−c3)d0 .

Now we show ||ti,n(m)||p ≤ cmwCap1. Divide the whole space D into exclusive subsets Bi(1) and Bi(ρ +

1)\Bi(ρ), ρ = 1, 2, · · · . Consider the case with im ∈ Bi(ρ + 1)\Bi(ρ). For each ρ ≥ 1, from equation (C.2),

we have

||
∑

im∈Bi(ρ+1)\Bi(ρ)

(Wm
n )iimς

∗
im,na||p ≤ C2capm

c3d0+2cmw ρ
(1−c3)d0 .

For Bi(1), there are two cases: im = i and im 6= i. For the case im = i, we have ||(Wm
n )iiς

∗
i,na||p ≤ capcmw . For

the case im 6= i, it must be ρiim = 1 from Assumption 1. Hence, ||
∑
im,ρiim=1(Wm

n )iimς
∗
im,n

a||p ≤ capc5c
m
w .

Since

ti,n(m) = ei,nW
m
n ς
∗
na =

∞∑
ρ=1

∑
im∈Bi(ρ+1)\Bi(ρ)

(Wm
n )iimς

∗
im,na+

∑
im∈Bi(1)

(Wm
n )iimς

∗
im,na,

we have

||ti,n(m)||p ≤
∞∑
ρ=1

||
∑

im∈Bi(ρ+1)\Bi(ρ)

(Wm
n )iimς

∗
im,na||p + ||

∑
im∈Bi(1)

(Wm
n )iimς

∗
im,na||p

≤ C2capm
c3d0+2cmw

∞∑
ρ=1

ρ(1−c3)d0 + capc5c
m
w + cmw cap ≤ mc3d0+2cmwCap.

Claim C.1.7 Let gi,n(m) = e′i,nG
m
n (λ)ς∗na, where ς∗n and a are the same as Claim C.1.6. Under Assump-

tions 1, 3.1), and 4.1), suppose supi,n ||ς∗i,n||p < ∞, then supi,n ||gi,n(m)||p < ∞ and supi,n ||gi,n(m) −
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E(gi,n(m)|Fi,n(s))||p ≤ Capms(2−c3)d0 with Capm being a finite constant.

Proof of Claim C.1.7. Suppose |x| < 1, taking the (m−1)th order derivative on both sides of (1−x)−1 =∑∞
k=0 x

k, we have (1 − x)−m(m − 1)! =
∑∞
k=m−1 k(k − 1) · · · (k − m + 2)xk−(m−1). Hence, Gmn (λ) =

(In − λWn)−mWm
n =

∑∞
l=0 C

l+m−1
l λlW l+m

n , where Cl+m−1
l is a binomial coefficient, and by using the

results for ti,n(l +m) in Claim C.1.6, we have

||gi,n(m)||p ≤
∞∑
l=0

(l +m− 1)m−1|λ|l||ti,n(l +m)||p ≤ cmwCap
∞∑
l=0

(l +m)m+c3d0+1|λcw|l <∞

and

||gi,n(m)− E(gi,n(m)|Fi,n(s))||p ≤
∞∑
l=0

(l +m− 1)m−1|λ|l||ti,n(l +m)− E(ti,n(m)|Fi,n(s))||p

≤ Cap

∞∑
l=0

|λ|lcl+mw (l +m)m+2+c3d0s(2−c3)d0 ≤ Capms(2−c3)d0 .

C.2 NED properties in Case 2 under Assumption 4.2)

Claim C.2.1 Under Assumptions 1, 3.1), and 4.2), for any positive integer q, supn ||W q
n ||1 ≤ cqwc5ρd0c .

Proof of Claim C.2.1. Consider the kth column sum of W q
n , as all elements in Wn are non-negative,

e′nW
q
nek,n =

n∑
i=1

e′nW
q−1
n ei,ne

′
i,nWnek,n ≤ ||W q−1

n ||∞ ·
n∑
i=1

e′i,nWnek,n.

Under Assumption 4.2), wij,n = 0 if j /∈ Bi(ρc), so
∑n
i=1 e

′
i,nWnek,n =

∑
i∈Bk(ρc)

wik,n ≤ cwc5ρ
d0
c . Hence,

e′nW
q
nek,n ≤ cqwc5ρd0c . As “≤” holds for any k and n, we have supn ||W q

n ||1 ≤ cqwc5ρd0c .

Claim C.2.2 Under Assumptions 1, 3.1), 3.2), and 4.2), supλ∈Λ ||Gn(λ)||∞ <∞ and supλ∈Λ ||Gn(λ)||1 <
∞.

Proof of Claim C.2.2. As Gn(λ) =
∑∞
l=0 λ

lW l+1
n and supλ∈Λ |λcw| < 1, we have supλ∈Λ ||Gn(λ)||∞ ≤∑∞

l=0 supλ∈Λ |λ|l||W l+1
n ||∞ ≤ cw

∑∞
l=0 supλ∈Λ |λcw|l <∞. By Claim C.2.1 on ||W l

n||1,

sup
λ∈Λ
||Gn(λ)||1 ≤

∞∑
l=0

sup
λ∈Λ
|λ|l||W l+1

n ||1 ≤ cwc5ρd0c
∞∑
l=0

sup
λ∈Λ
|λcw|l <∞.
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Claim C.2.3 If the i, jth element of Wm
n is not zero, then ρij ≤ mρc.

Proof of Claim C.2.3. The i, jth element of Wm
n is

∑
i1

∑
i2
· · ·
∑
im−1

wii1,nwi1i2,n · · ·wim−1j,n. If it is

not zero, then there exists at least one path i→ i1 → · · · im−1 → j such that all wii1,n, wi1i2,n, · · · , wim−1j,n

are positive. As wij,n = 0 if j /∈ Bi(ρc), it must be i1 ∈ Bi(ρc), i2 ∈ Bi1(ρc),..., j ∈ Bim−1
(ρc). Therefore,

ρij ≤ ρii1 + ρi1i2 + ...+ ρim−1j ≤ mρc.

Claim C.2.4 For any positive integer p and 0 < q < 1, if s ≥ p/(− ln q) + 1, then there exists a finite

constant c such that
∑
l=[s] l

pql < cspqs, where [s] denotes the largest integer less than or equal to s.

Proof of Claim C.2.4. Let f(x) = xpqx, then f ′p−1qx(p + x ln q) < 0 if x > p/(− ln q). As s ≥
p/(− ln q) + 1, ∑

l=s

lpql <

∫ ∞
s

xpqxdx = −s
pqs

ln q
− p

ln q

∫ ∞
s

xp−1qxdx < c0s
pqs,

where c0 is a constant. The first inequality holds because the sequence lpql is monotonically decreasing

when l > p/(− ln q). The equality is from integration by parts, and the last inequality is from induction for∫∞
s
xrqxdx for r = 0, 1, ...p. Therefore,

∑
l=[s] l

pql <
∑
l=s−1 l

pql < c0(s− 1)pqs−1 < cspqs.

Claim C.2.5 Let ti,n(m) = e′i,nW
m
n ς
∗
na, where ς∗n and a are the same as Claim C.1.6. Under Assumptions

1, 3.1) and 4.2), suppose supi,n ||ς∗i,n||p < ∞, then supi,n ||ti,n(m)||p ≤ Capm
d0cmw and supi,n ||ti,n(m) −

E(ti,n(m)|Fi,n(s))||p ≤ Cap1ϕ(s) with Cap and Cap1 being positive constants; ϕ(s) = 1 if s ≤ mρc and

ϕ(s) = 0 if s > mρc.

Proof of Claim C.2.5. From Claim C.2.3, e′i,nW
m
n ek,n = 0 if k /∈ Bi(mρc). Therefore,

|ti,n(m)| = |
∑
k

e′i,nW
m
n ek,ne

′
k,nς

∗
na| = |

∑
k∈Bi(mρc)

e′i,nW
m
n ek,ne

′
k,nς

∗
na| ≤ max

k,n
|e′i,nWm

n ek,n|
∑

k∈Bi(mρc)

|ς∗k,na|

and hence,

||ti,n(m)||p ≤ cmw
∑

k∈Bi(mρc)

||ς∗k,na||p ≤ cmw c5(mρc)
d0cap = Capc

m
wm

d0 ,

where cap = supi,n ||ς∗i,na||p and Cap = capc5ρ
d0
c .

Next, we show the NED property. For the spatial weight matrix without row-normalization, wij,n is a

function of ςi,n and ςj,n, and wij,n = 0 if j /∈ Bi(ρc). For the row-normalized case, wij,n may be related to

many points in Bi(ρc) and in general is a function of ς’s at those locations. In both cases, all the locations

of nodes in the chains of e′i,nW
m
n related to ti,n(m) are within the ball Bi(mρc). Hence, when s > mρc,

ti,n(m)− E(ti,n(m)|Fi,n(s)) = 0. With s ≤ mρc,

||ti,n(m)− E(ti,n(m)|Fi,n(s))||p ≤ 2||ti,n(m)||p ≤ 2Capc
m
wm

d0 .

Therefore, the NED property follows if we choose ϕ(s) = 1 for s ≤ mρc and ϕ(s) = 0 for s > mρc.
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Claim C.2.6 Denote gi,n(m) = ei,nG
m
n (λ)ς∗na, where ς∗n and a are the same as Claim C.1.6. Under As-

sumptions 1, 3.1), and 4.2), suppose supi,n ||ς∗i,n||p <∞, then supi,n ||gi,n(m)||p <∞ and supi,n ||gi,n(m)−
E(gi,n(m)|Fi,n(s))||p ≤ Capmϕ(s) with Capm being a finite constant; ϕ(s) = 1 if s ≤ mρc and ϕ(s) =

sd0+m−1|λcw|s/ρc if s > mρc.

Proof of Claim C.2.6. From the proof of Claim C.1.7, gi,n(m) =
∑∞
l=0 C

l+m−1
l λlti,n(l + m). If λ = 0,

then gi,n(m) = ti,n(m) and the Claim follows from Claim C.2.5. For λ 6= 0, by Claim C.2.5, for any i and n,

||gi,n(m)||p ≤ cmwCap
∞∑
l=0

|λcw|l(l +m)d0+m−1,

which is finite and denoted as Cm. Thus, for s > 0, ||gi,n(m)−E(gi,n(m)|Fi,n(s))||p ≤ 2||gi,n(m)||p ≤ 2Cm.

Now consider the case when s > mρc. Given such an s, from Claim C.2.5, ti,n(m+l)−E(ti,n(m+l)|Fi,n(s)) =

0 for any nonnegative integer l such that s > (m+ l)ρc. Such a set of l will be determined by l < ( sρc −m).

Therefore, when s > mρc,

||gi,n(m)− E(gi,n(m)|Fi,n(s))||p = ||
∞∑

l=[ sρc−m]

Cl+m−1
l λl[ti,n(l +m)− E(ti,n(l +m)|Fi,n(s))]||p

≤ 2

∞∑
l=[ sρc−m]

(l +m)m−1|λ|l||ti,n(l +m)||p ≤ 2Capc
m
w

∞∑
l=[ sρc−m]

|λcw|l(l +m)m−1+d0 ,

where the last inequality follows from Claim C.2.5. By the inequality in Claim C.2.4, as s/ρc > m, we have

∞∑
l=[ sρc−m]

|λcw|l+m(l +m)m−1+d0/|λ|m =

∞∑
l=[ sρc ]

|λcw|llm−1+d0/|λ|m = O(sm+d0−1|λcw|s/ρc).

The Claim would follow if we set ϕ(s) = 1 if s ≤ mρc and ϕ(s) = sd0+m−1|λcw|s/ρc if s > mρc.

C.3 Proofs of main results

Proof of Proposition 1. As Mn = A′nBn, if we denote a′ς∗′nMnς
∗
nb =

∑n
i=1 qi,n, then qi,n = a∗i,nb

∗
i,n,

where a∗i,n = ei,nAnς
∗
na and b∗i,n = ei,nBnς

∗
nb can be either ti,n(m1) or gi,n(m2) for any finite integers m1

and m2. Under Assumption 4.1), Claims C.1.6, C.1.7, and B.3 give us ||qi,n||p/2 ≤ ||a∗i,n||p · ||b∗i,n||p <∞ and

||qi,n − E[qi,n|Fi,n(s)]||2 ≤ Cms
(2−c3)d0 , with Cm being a finite constant. Under Assumption 4.2) Claims

C.2.5, C.2.6 and B.3 give us ||qi,n||p/2 ≤ ||a∗i,n||p · ||b∗i,n||p < ∞ and ||qi,n − E[qi,n|Fi,n(s)]||2 ≤ Cqϕ(s)

with ϕ(s) = 1 if s ≤ sm and ϕ(s) = sd0+m−1|λcw|s/ρc if s > sm, where Cm and sm are some finite

constants. For both cases of Wn, conditions in Claim B.4 are satisfied. Therefore, 1
nE|a

′ς∗′nMnς
∗
nb| = O(1)

and 1
n [a′ς∗′nMnς

∗
nb− E(a′ς∗′nMnς

∗
nb)] = op(1).
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Proof of Corollary 1. We have 1
n [a′ς∗n(θ)′Gm1

n (λ)′Gm2
n (λ)ς∗n(θ)b − E(a′ς∗n(θ)Gm1

n (λ)′Gm2
n (λ)ς∗n(θ)b)] =

op(1) pointwisely for any θ from Proposition 1. As θ enters ς∗n(θ) polynomially and the parameter space of θ is

compact, to show the ULLN, we only need to show the stochastic equicontinuity of 1
na
′ς∗′n G

m1
n (λ)′Gm2

n (λ)ς∗nb.

By the mean value theorem,

|a′ς∗′n Gm1
n (λ1)′Gm2

n (λ1)ς∗nb− a′ς∗′n Gm1
n (λ2)′Gm2

n (λ2)ς∗nb| =
∣∣(λ1 − λ2)a′ς∗′n An(λ)ς∗nb

∣∣
≤ |λ1 − λ2| (a′ς∗′n ς∗na)

1
2
(
b′ς∗′n An(λ)′An(λ)ς∗nb

) 1
2 ≤ |λ1 − λ2| (a′ς∗′n ς∗na)

1
2 (b′ς∗′n ς

∗
nb)

1
2 [µmax(An(λ)′An(λ))]

1
2

≤ |λ1 − λ2| (a′ς∗′n ς∗na)
1/2

(b′ς∗′n ς
∗
nb)

1/2
(

sup
λ∈Λ
||A′n(λ)An(λ)||∞

)1/2

,

where λ is between λ1 and λ2, An(λ) = Gm1
n (λ)′[m2Gn(λ) +m1G

m1
n (λ)′]Gm2

n (λ), and µmax(·) is the largest

eigenvalue of the matrix inside. The first inequality is from the Cauchy–Schwarz inequality, the second

inequality holds as An(λ)′An(λ) is non-negative definite, and the last inequality is from the spectral ra-

dius theorem. From Claims C.1.3 and C.2.2, supλ∈Λ ||Gn(λ)||∞ < ∞ and supλ∈Λ ||Gn(λ)||1 < ∞, so

supλ∈Λ ||A′n(λ)An(λ)||∞ <∞. As 1
na
′ς∗′n ς

∗
na = Op(1) and 1

nb
′ς∗′n ς

∗
nb = Op(1), we have

sup
|λ1−λ2|<δ∗

1

n
|a′ς∗′n Gm1

n (λ1)′Gm2
n (λ1)ς∗nb− a′ς∗′n Gm1

n (λ2)′Gm2
n (λ2)ς∗nb| = Op(δ

∗).

Then the ULLN follows.

Proof of Proposition 2. Similarly to the proof of Proposition 1, denote a′jς
∗′
nMjnς

∗
nbj =

∑n
i=1 qi,n(j),

then ri,n =
∑m
j=1 qi,n(j). Each qi,n(j) is L2-NED on the i.i.d. random field ς = (ε, ξ) with a finite NED

scaling factor. It is straightforward to show ||ri,n||2+δε <∞. For the case in Assumption 4.1), Claims C.1.6

and C.1.7 give the same NED coefficient ϕ(s) = s(2−c3)d0 for each qi,n(j). Therefore, by Claim B.3, the NED

coefficient for ri,n is also ϕ(s) = s(2−c3)d0 . As c3 > 3,
∑∞
r=1 r

d0−1ϕ(r) =
∑∞
r=1 r

(3−c3)d0−1 < ∞. For the

case in Assumption 4.2), Claims C.2.5, C.2.6, and B.3 give the NED coefficient ϕ(s) = sd0+m−1|λcw|s/ρc if

s > mρc, otherwise, ϕ(s) = 1, where m is the highest power of Gmn in Mjn’s. Therefore,
∑∞
r=1 r

d0−1ϕ(r) =∑mρc
r=1 r

d0−1+
∑∞
r=mρc+1 r

d0+m−1|λcw|r/ρc <∞. All the four conditions in Claim B.5 are satisfied and hence,

Rn/σRn
d→ N(0, 1).

Proof of Theorem 1. Under Assumptions 1-5, by applying Proposition 1, κ̂−κ0
p→ a limn→∞

1
nE(Q′nξn)+

b limn→∞
1
nE(X ′2nεnδ0), where

a =

(
H ′q[ lim

n→∞
E(

Q′nQn
n

)]−1Hq

)−1

H ′q[ lim
n→∞

E(
Q′nQn
n

)]−1 and b = a lim
n→∞

E(
Q′nX2n

n
)( lim
n→∞

X ′2nX2n

n
)−1

with Hq = lim
n→∞

1
n [E(Q′nGn)X1nβ0+E(Q′nGnεn)δ0, E(Q′n)X1n, E(Q′nεn)]. As E(Q′nξn) = 0 and E(X ′2nεn) =

0, we have κ̂−κ0
p→ 0. Under given assumptions, since κ̂−κ0 can be written as a form of Rn in Proposition

2,
√
n(κ̂− κ0)

d→ N(0,ΣIV ). Similarly, we can show
√
n(κ̂G − κ0)

d→ N(0,ΣGIV ).
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Proof of Theorem 2. Let κ̂BGIV be the best G2SIV estimator with the corresponding optimal IV

matrix Q∗n = [GnX1n, GnZn, Xn, Zn]. As
√
n (κ̂BGIV − κ0)

d→ N(0,ΣBGIV ) from Theorem 1, to show
√
n (κ̂FBGIV − κ0)

d→ N(0,ΣBGIV ), it is sufficient to show
√
n(κ̂FBGIV − κ̂BGIV ) = op(1). Denote Q̂∗n =

[Gn(λ̂)X1n, Gn(λ̂)Zn, Xn, Zn], v0 =
δ′0Σε0δ0/σ

2
ξ0

σ2
ξ0+δ′0Σε0δ0

, and v̂ =
δ̂′Σ̂εδ̂/σ̂

2
ξ

σ̂2
ξ+δ̂′Σ̂εδ̂

. Then

κ̂FBGIV − κ0 = [(WnYn, X1n, P
⊥
n Zn)′Π̂−1

n Q̂∗n(Q̂∗′n Π̂−1
n Q̂∗n)−1Q̂∗′n Π̂−1

n (WnYn, X1n, P
⊥
n Zn)]−1

·(WnYn, X1n, P
⊥
n Zn)′Π̂−1

n Q̂∗n(Q̂∗′n Π̂−1
n Q̂∗n)−1Q̂∗′n Π̂−1

n (ξn + Pnεnδ0).

We will show 1
n (Q̂∗′n Π̂−1

n Q̂∗n−Q∗′nΠ−1
n Q∗n) = op(1), 1

n [Q̂∗′n Π̂−1
n (WnYn, X1n, P

⊥
n Zn)−Q∗′nΠ−1

n (WnYn, X1n, P
⊥
n Zn)] =

op(1), and 1√
n
Q̂∗′n Π̂−1

n (ξn + Pnεnδ0)− 1√
n
Q∗′nΠ−1

n (ξn + Pnεnδ0) = op(1). As

1

n

(
Q̂∗′n Π̂−1

n Q̂∗n −Q∗′nΠ−1
n Q∗n

)
=

1

n

(
1

σ̂2
ξ

Q̂∗′n Q̂
∗
n −

1

σ2
ξ0

Q∗′nQ
∗
n

)
− 1

n

(
v̂Q̂∗′n PnQ̂

∗
n − v0Q

∗′
n PnQ

∗
n

)
,

we can show each part is op(1). From the proof of Corollary 1, supλ || 1n Q̂
∗′
n Q̂
∗
n|| = Op(1) and supλ

1
n ||Q̂

∗′
n Q̂
∗
n−

Q∗′nQ
∗
n|| = op(1), so

1

n

(
1

σ̂2
ξ

Q̂∗′n Q̂
∗
n −

1

σ2
ξ0

Q∗′nQ
∗
n

)
= (

1

σ̂2
ξ

− 1

σ2
ξ0

)
1

n
Q̂∗′n Q̂

∗
n +

1

σ2
ξ0

(
1

n
Q̂∗′n Q̂

∗
n −

1

n
Q∗′nQ

∗
n

)
= op(1).

With same arguments, 1
n

(
v̂Q̂∗′n PnQ̂

∗
n − v0Q

∗′
n PnQ

∗
n

)
= op(1). Together, we have 1

n (Q̂∗′n Π̂−1
n Q̂∗n−Q∗′nΠ−1

n Q∗n) =

op(1). Similarly, we can show 1
n [Q̂∗′n Π̂−1

n (WnYn, X1n, P
⊥
n Zn) − Q∗′nΠ−1

n (WnYn, X1n, P
⊥
n Zn)] = op(1). It re-

mains to show 1√
n
Q̂∗′n Π̂−1

n (ξn + Pnεnδ0) − 1√
n
Q∗′nΠ−1

n (ξn + Pnεnδ0) = op(1). From Propositions 1 and 2,

and Corollary 1,
√
n( 1

σ̂2
ξ
− 1

σ2
ξ0

) = Op(1), 1
n Q̂
∗′
n (ξn + Pnεnδ0) = op(1), 1√

n
Q∗′n (ξn + Pnεnδ0) = Op(1), and

1√
n

(Q̂∗n −Q∗n)′(ξn + Pnεnδ0) = op(1) as initial estimates are
√
n-consistent, so

1√
nσ̂2

ξ

Q̂∗′n (ξn + Pnεnδ0)− 1√
nσ2

ξ0

Q∗′n (ξn + Pnεnδ0) = op(1).

Similarly, 1√
n
v0Q

∗′
n Pn(ξn + Pnεnδ0)− 1√

n
v̂Q̂∗′n Pn(ξn + Pnεnδ0) = op(1). As Π−1

n = 1
σξ0

In − v0Pn,

1√
n
Q̂∗′n Π̂−1

n (ξn + Pnεnδ0)− 1√
n
Q∗′nΠ−1

n (ξn + Pnεnδ0) = op(1).

These together complete the proof
√
n(κ̂FBGIV − κ̂BGIV ) = op(1).

Claim C.3.1 Under Assumptions 1- 4, and 6, θ0 is the unique maximizer of lim
n→∞

1
nE lnLn(θ).
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Proof of Claim C.3.1. We want to show limn→∞
1
n [E (lnLn(θ)) − E (lnLn(θ0))] ≤ 0 and the equality

holds iff θ = θ0. From Section A.1, we have

1

n
[E (lnLn(θ))− E (lnLn(θ0))] = −1

2
ln
σ2
ξ

σ2
ξ0

− 1

2
ln
|Σε|
|Σε0|

+
1

n
E(ln

|Sn(λ)|
|Sn|

)− 1

2
tr(Σ

1/2
ε0 Σ−1

ε Σ
1/2
ε0 − Ip2)

− 1

2n

n∑
i=1

x′2,in(Γ0 − Γ)Σ−1
ε (Γ0 − Γ)′x2,in +

1

2
−

σ2
ξ0

2nσ2
ξ

E[tr(S−1′
n Sn(λ)′Sn(λ)S−1′

n )]

− 1

2σ2
ξ

((λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′)H1n((λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′)′

= −1

2
[tr(Σ

1/2
ε0 Σ−1

ε Σ
1/2
ε0 )− ln |Σ1/2

ε0 Σ−1
ε Σ

1/2
ε0 | − p2]− 1

2n

n∑
i=1

x′2,in(Γ0 − Γ)Σ−1
ε (Γ0 − Γ)′x2,in

− 1

2σ2
ξ

((λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′)H1n((λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′)′

− 1

2n
E

[
tr

(
σ2
ξ0

σ2
ξ

S−1′
n Sn(λ)′Sn(λ)S−1

n

)
− ln

∣∣∣∣∣σ2
ξ0

σ2
ξ

S−1′
n Sn(λ)′Sn(λ)S−1

n

∣∣∣∣∣− n
]
. (C.3)

First we show 1
n [E (lnLn(θ)) − E (lnLn(θ0))] ≤ 0. By the concavity of lnx, for any x > 0, the function

f(x) = x− lnx−1 ≥ 0 and it is minimized only at x = 1. Also for any positive definite real value matrix M ,

f(M) = tr(M)− ln |M | −m =
∑m
i=1(ϕi − lnϕi − 1) ≥ 0 and is minimized only at M = Im, where m is the

dimension of M and ϕ′is (i = 1, ...m) are eigenvalues of M . Therefore, 1
n [E (lnLn(θ))− E (lnLn(θ0))] ≤ 0.

Now we show that lim
n→∞

1
n [E (lnLn(θ)) − E (lnLn(θ0))] = 0 implies θ = θ0. All the four terms in

(C.3) are zero. Since f(Σ
1/2
ε0 Σ−1

ε Σ
1/2
ε0 ) = 0, it must be Σε = Σε0. As lim

n→∞
1
nX
′
2nX2n is p.d., it must

be Γ0 = Γ. The third and fourth terms imply lim
n→∞

((λ0 − λ), (β0 − β)′, ((Γ − Γ0)δ)′, (δ0 − δ)′)H1n = 0

and
σ2
ξ0

σ2
ξ
S−1′
n Sn(λ)′Sn(λ)S−1

n = In with probability one. With Γ0 = Γ, limn→∞((λ0 − λ), (β0 − β)′, ((Γ −
Γ0)δ)′, (δ0− δ)′)H1n = 0 is equivalent to ((λ0−λ), (β0−β)′, (δ0− δ)′)Hn = 0, where Hn = 1

nE[(Gn(X1nβ0 +

εnδ0), X1n, εn)′(Gn(X1nβ0 + εnδ0), X1n, εn)].

Under Assumption 6(a) that Hn is p.d., we have λ0 = λ, β0 = β, and δ0 = δ. Under Assumption 6(b),

as Sn(λ)′Sn(λ) is linearly independent of S′nSn with probability one, i.e., for any λ 6= λ0, no value of σ2
ξ can

make the equality
σ2
ξ0

σ2
ξ
S−1′
n Sn(λ)′Sn(λ)S−1

n = In hold with probability one., then, it must be λ = λ0 and

σ2
ξ = σ2

ξ0. Since lim
n→∞

1
nX
′
1nX1n is p.d., the third term being zero implies β = β0 and δ = δ0.

Claim C.3.2 Under Assumptions 1- 3, and 6, the information matrix Iθ0 is positive definite.

Proof of Claim C.3.2. The Iθ0 = − lim
n→∞

E
(

1
n
∂2 lnLn(θ0)

∂θ∂θ′

)
. Since Xn is made of all distinct column

vectors of X1n and X2n, we can write X1nβ0 = Xnβ
+
0 and X2nΓ0 = XnΓ+

0 , where some elements in β+ and

γ+ are zero. To show Iθ0 is p.d., it is sufficient to show that I+
θ0

is p.d., where I+
θ0

is the information matrix

for Ln(θ+) and θ+ = (λ, β+′, vec(Γ+)′, σ2
ξ , α
′, δ′)′ without constraints on some elements of β+

0 and Γ+
0 being
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zero. Let CI = (cI1, c
′
I2, vec(cI3)′, cI4, c′I5, c′I6)′ be a (k + kp2 + J + p2 + 2) dimensional column vector of

constants, where cI1 and cI4 are constants; cI2, cI5, and cI6 are column vectors of dimension k, J , and p2;

c3 is a k × p2 matrix. To prove I+
θ0

is p.d., it is sufficient to show that the CI = 0 is the only solution to

I+
θ0
CI = 0. From the second row block of the linear equation system I+

θ0
CI = 0, we have

lim
n→∞

1

n
[−cI1X ′nE(GnXnβ

+
0 +Gnεnδ0)−X ′nXncI2 + (δ′0 ⊗ (X ′nXn))vec(cI3)] = 0.

From the third row block, we have

lim
n→∞

1

n
[cI1(δ0 ⊗X ′n)E(GnXnβ0 +Gnεnδ0) + (δ0 ⊗ (X ′nXn))cI2 − ((σ2

ξ0Σ−1
ε0 + δ0δ

′
0)⊗ (X ′nXn))vec(cI3)] = 0.

By cancelling out lim
n→∞

1
nX
′
nXncI2 in above two equations, we have lim

n→∞
1
n (Σ−1

ε0 ⊗(X ′nXn))vec(cI3)σ2
ξ0 = 0. As

lim
n→∞

X′nXn
n is p.d., it follows that cI3 = 0. Now with cI3 = 0, cI2 = −cI1(limn→∞

X′nXn
n )−1 limn→∞

1
n [X ′nE(GnXnβ

+
0 +

Gnεnδ0)]. From the fourth row block, we have cI4 = 2σ2
ξ0 lim
n→∞

1
nE[−cI1tr(Gn)]. From the fifth row block,

we have cI5 = 0. From the sixth row block, we have cI6 = −cI1Σ−1
ε0 lim

n→∞
1
nE[ε′nGn(X1nβ

+
0 + εnδ0)]. From

the first row block, we have

0 = lim
n→∞

1

n
{−cI1

[
σ2
ξ0tr[E(G2

n +GnG
′
n)] + E[(Xnβ

+
0 +Gnεnδ0)′G′nGn(Xnβ

+
0 +Gnεnδ0)]

]
−c′I2X ′nE(GnXnβ

+
0 +Gnεnδ0) + vec(cI3)′[δ0 ⊗X ′nE(GnXnβ

+
0 +Gnεnδ0)]− cI4E[tr(Gn)]

−c′I6E(ε′nGn(Xnβ
+
0 + εnδ0))}.

Plugging in cI2, ..., cI6 from the above, we have

0 = −cI1 lim
n→∞

1

n
[σ2
ξ0tr[E(G2

n +GnG
′
n)]− lim

n→∞
cI1

1

n
E(H ′nHn) + 2cI1σ

2
ξ0

(
lim
n→∞

E
tr(Gn)

n

)2

+cI1 lim
n→∞

1

n
E(H ′n)Xn(X ′nXn)−1X ′nE(Hn) + cI1

(
lim
n→∞

E
ε′nHn

n

)′
Σ−1
ε0

(
lim
n→∞

E
ε′nHn

n

)
,

whereHn = Gn(Xnβ
+
0 +εnδ0) = Gn(X1nβ0+εnδ0). By Cauchy–Schwarz inequality, E(H ′nHn)−E(H ′n)E(Hn) ≥

1
nE(H ′nεn)Σ−1

ε0 E(ε′nHn). Hence,

E(H ′nHn)− 1

n
E(H ′nεn)Σ−1

ε0 E(ε′nHn)− E(H ′n)Xn(X ′nXn)−1X ′nE(Hn)

≥ E(H ′n)E(Hn)− E(H ′n)[Xn(X ′nXn)−1X ′n]E(Hn) = E(H ′n)[In −Xn(X ′nXn)−1X ′n]E(Hn) ≥ 0.

As E[tr(G2
n+GnG

′
n)]− 2

nE
2[tr(Gn)] ≥ E[tr(G2

n+GnG
′
n− 2

n tr
2(Gn)] = 1

2E[tr(Gn+G′n−2tr(Gn)In/n)2] ≥ 0

by Assumption 6 b) and lim
n→∞

1
nE(H ′n)[In −Xn(X ′nXn)−1X ′n]E(Hn) is p.d. by Assumption 6 a), it follows

that cI1 = 0, and therefore cI2, cI4, and cI6 are all zeros.
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Proof of Theorem 3. First we check two conditions for consistency of the QMLE in two steps.

Step 1: Uniform convergence of the log quasi-likelihood function. All terms in the log quasi-likelihood

function in Appendix A.1 can be expressed in the general terms Mn in Proposition 1. the pointwise conver-

gence is straightforward. Since all parameters are bounded and they enter the log quasi-likelihood function

polynomially except for the term ln |Sn(λ)|, we only need to show the stochastic equicontinuity of 1
n ln |Sn(λ)|

to have the uniform convergence. Applying the mean value theorem,∣∣∣∣ 1n (ln |Sn(λ1)| − ln |Sn(λ2)|)
∣∣∣∣ =

∣∣∣∣(λ2 − λ1)
1

n
tr(Gn(λ))

∣∣∣∣ ≤ |λ2 − λ1|C, (C.4)

where λ is between λ1 and λ2 and C is a constant not depending on n. The inequality is implied by

supλ ||Gn(λ)||∞ <∞. From this, we have supθ∈Θ | 1n lnLn(θ)− E[ 1
n lnLn(θ)]| p→ 0.

Step 2: Uniform equicontinuity of lim
n→∞

E
(

1
n lnLn(θ)

)
. By inequality in (C.4), variance parameters being

bounded away from zero in compact parameter spaces, and earlier result 1
nE|ς

∗′
nMnς

∗
n| = O(1), we have that

E
(

1
n lnLn(θ)

)
is uniformly equicontinuous in θ ∈ Θ.

As θ0 is the unique maximizer of lim
n→∞

E[ 1
n lnLn(θ)] from Claim C.3.1, these together imply θ̂

p→ θ0.

Next we show the asymptotic normality of θ̂. The second derivatives in Appendix A.3 can be written in the

general form in Corollary 1, so we have the uniform convergence that sup
θ∈Θ

1
n

∥∥∥∂2 lnLn(θ)
∂θ∂θ′ − E

(
∂2 ln(Ln(θ))

∂θ∂θ′

)∥∥∥ p→

0. Applying the CLT in Proposition 2 to 1√
n
∂ lnLn(θ0)

∂θ in Appendix A.2, we have

√
n(θ̂ − θ0) = −

(
1

n

∂2 lnLn(θ̃)

∂θ∂θ′

)−1
1√
n

∂ lnLn(θ0)

∂θ
= −

[
E

(
1

n

∂2 lnLn(θ0)

∂θ∂θ′

)]−1
1√
n

∂ lnLn(θ0)

∂θ
+ op(1)

d→ N

(
0,

(
lim
n→∞

1

n
E(

∂2 lnLn(θ0)

∂θ∂θ′
)

)−1

lim
n→∞

1

n
E(

∂ lnLn(θ0)

∂θ

∂ lnLn(θ0)

∂θ′
)

(
lim
n→∞

1

n
E(

∂2 lnLn(θ0)

∂θ∂θ′
)

)−1
)
.

Proof of Theorem 4. As ξn(θG) = (λ0 − λ)Gn(X1nβ0 + εnδ0) +X1n(β0 − β)−X2n(Γ0 − Γ)δ + εn(δ0 −
δ) + [In − (λ− λ0)Gn]ξn, we have ξn(θG) = Mnς

∗
nb1(θG0 − θG) +X2n(Γ0 − Γ)(δ0 − δ) + ξn, where ς∗n and Mn

are expressed as in Propositions 1 and 2. Therefore

1

n
ξ′n(θG)Qn

p→ (θG0 − θG)′ lim
n→∞

1

n
E(b′1ς

∗′
nM

′
nQn) + [(Γ0 − Γ)(δ0 − δ)]′ lim

n→∞

1

n
X ′2nQn.

For Pjn = Mjn − 1
n tr(Mjn)In,

ξ′n(θG)Pjnξn(θG) = (θG0 − θG)′b′1ς
∗′
nM

′
nPjnMnς

∗
nb1(θG0 − θG) + 2(θG0 − θG)′b′1ς

∗′
nM

′
nPjnξn + ξ′nPjnξn

+[(Γ0 − Γ)(δ0 − δ)]′X ′2nPjn[X2n(Γ0 − Γ)(δ0 − δ) +Mnς
∗
nb1(θG0 − θG) + ξn].
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Proposition 1 implies that 1
nξ
′
nPjnξn

p→ lim
n→∞

1
nE(ξ′nMjnξn) − lim

n→∞
1
n tr[E(Mjn)] lim

n→∞
1
nE(ξ′nξn) = 0 and

1
n ς
∗′
nM

′
nPjnMnς

∗
n

p→ lim
n→∞

1
nE(ς∗′nM

′
nMjnMnς

∗
n)− lim

n→∞
1
n tr[E(Mjn)] lim

n→∞
1
nE(ς∗′nM

′
nMnς

∗
n). Therefore,

1

n
ξ′n(θG)Pjnξn(θG)

p→ 2(θG0 − θG)′b′1

(
lim
n→∞

1

n
E(ς∗′nM

∗′
n Mjnξn)− lim

n→∞

1

n
E(ς∗′nM

∗′
n ξn) lim

n→∞

1

n
E(Mjn)

)
+(θG0 − θG)′b′1

(
lim
n→∞

1

n
E(ς∗′nM

∗′
n MjnM

∗
nς
∗
n)− lim

n→∞

1

n
E(ς∗′nM

∗′
n M

∗
nς
∗
n) lim

n→∞

1

n
trE(Mjn)

)
b1(θG0 − θG)

+[(Γ0 − Γ)(δ0 − δ)]′
(

lim
n→∞

1

n
X ′2nE(Pjn)X2n

)
(Γ0 − Γ)(δ0 − δ)

+[(Γ0 − Γ)(δ0 − δ)]′[ lim
n→∞

1

n
E(X ′2nMjnMnς

∗
n)− lim

n→∞

1

n
trE(Mjn) lim

n→∞

1

n
E(X ′2nMnς

∗
n)]b1(θG0 − θG).

From these moments, we see 1
ngn(θG)

p→ g(θG) with g(θG0 ) = 0. As all parameters in θG enter gn(θG)

polynomially, pointwise convergence gives the uniform convergence that supθG
1
n

∥∥angn(θG)− ang(θG)
∥∥ p→ 0.

With the identification conditions from Assumption 7, the consistency of GMM θ̂Gn follows.

For the asymptotic distribution of θ̂Gn , by Taylor’s expansion of
∂g′n(θ̂Gn )
∂θG

a′nangn(θ̂Gn ) = 0 at θG0 ,

√
n(θ̂Gn − θG0 ) = −

(
1

n

∂g′n(θ̂Gn )

∂θG
a′nan

1

n

∂g′n(θ
G

n )

∂θG

)−1

1

n

∂g′n(θ̂Gn )

∂θG
a′n

1√
n
angn(θG0 ),

where θ
G

n is between θ̂Gn and θG0 . Denote As = A+A′ as the sum of A and its transpose, then

1

n

∂gn(θG)

∂θG′
=

1

n



−ξ′n(θG)P s1nWnYn −ξ′n(θG)P s1nX1n −δ′ ⊗ [ξ′n(θG)P s1nX2n] ξ′n(θG)P s1n(Zn −X2nΓ)
...

...
...

...

−ξ′n(θG)P smnWnYn −ξ′n(θG)P smnX1n −δ′ ⊗ [ξ′n(θG)P smnX2n] ξ′n(θG)P smn(Zn −X2nΓ)

−Q′nWnYn −Q′nX1n δ′ ⊗ (Q′nX2n) −Q′n(Zn −X2nΓ)

0 0 −Ip2 ⊗ (X ′nX2n) 0


.

It is easy to check supθG
1
n

∥∥∥∂gn(θG)
∂θG

−
(
∂g(θG)
∂θG

)∥∥∥ p→ 0. Thus
√
n(θ̂Gn−θG0 ) = − (D′na

′
nanDn)

−1
D′na

′
n

1√
n
angn(θG0 )+

op(1). As 1√
n
gn(θG0 ) involves 1√

n
X ′nεn,

1√
n
Q′nξn, and

1√
n
ξ′nMjnξn −

1√
n
ξ′nξn

tr(Mjn)

n
=

1√
n
ξ′nMjnξn −

1√
n
ξ′nξn

E[tr(Mjn)]

n
+ op(1),

the asymptotic distribution of
√
n(θ̂Gn − θG0 ) is of the form of Rn in Proposition 2. Under Assumptions 1-4,

and 7,
√
n(θ̂Gn − θG0 )

d→ N(0,ΣGMM ).
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Now we give the expressions of Dn and Ω(θG0 ).

Dn = −plim
n→∞

1

n

∂(gn(θG0 ))

∂θG′

= lim
n→∞



g1λ 0 0 0
...

...
...

...

gmλ 0 0 0
1
nE[Q′nGn(X1nβ0 + εnδ0)] E(

Q′nX1n

n ) −δ′ ⊗ E(
Q′nX2n

n ) E(
Q′nεn
n )

0 0 Ip2 ⊗ (
X′nX2n

n ) 0


, (C.5)

where gjλ = σ2
ξ0

(
lim
n→∞

1
nE[tr(Ms

jnGn)]− lim
n→∞

1
nE[tr(Ms

jn)] lim
n→∞

1
nE[tr(Gn)]

)
for j = 1, ...,m, because

1

n
ξ′nP

s
jnWnYn =

1

n
ξ′nP

s
jnGnξn +

1

n
ξ′nP

s
jnGn(X1nβ0 + εnδ0)]

p→ lim
n→∞

1

n
ξ′nP

s
jnGnξn = lim

n→∞

1

n
ξ′nM

s
jnGnξn − lim

n→∞

1

n
tr(Ms

jn)
1

n
ξ′nGnξn

= σ2
ξ0

(
lim
n→∞

1

n
E[tr(Ms

jnGn)]− lim
n→∞

1

n
E[tr(Ms

jn)] lim
n→∞

1

n
E[tr(Gn)]

)
.

For the variance,

Ω(θG0 ) = V ar(gn(θG0 )) = lim
n→∞

1

n



Ω11 · · · Ω1m

∑n
i=1E[(ξ3

i,nP1n(i, i)Qi.,n] 0

Ω21 · · · Ω2m

∑n
i=1E[(ξ3

i,nP2n(i, i)Qi.,n] 0
...

...
...

...

Ωm1 · · · Ωmm
∑n
i=1E[(ξ3

i,nPmn(i, i)Qi.,n] 0

0 · · · 0 σ2
ξ0Q

′
nQn 0

0 · · · 0 0 Σε0 ⊗ (X ′nXn)


,

(C.6)

where Ωjk = V ar(ξ′nPjnξnξ
′
nPknξn) =

∑n
i=1E[(ξ4

i,n − 3σ4
ξ0)Pjn(i, i)Pkn(i, i)] + σ4

ξ0tr(PjnP
s
kn) for j, k =

1, ...,m.

Proof of Claim 1. As ξ̂n = Sn(λ̂)Yn −X1nβ̂ − (Zn −X2nΓ̂)δ̂ = ξ̂∗n +X2n(Γ0 − Γ̂)(δ0 − δ̂), where

ξ̂∗n = Sn(λ̂)Yn −X1nβ̂ − (Zn −X2nΓ̂)δ0 + εn(δ0 − δ̂)

= (λ0 − λ̂)Gn(X1nβ0 + εnδ0) +X1n(β0 − β̂)−X2n(Γ0 − Γ̂)δ0 + εn(δ0 − δ̂)− (λ̂− λ0)Gnξn + ξn,

we can express 1
n ξ̂
∗′
n ξ̂
∗
n in the following form as in Proposition 1 so that:

1

n
ξ̂∗′n ξ̂

∗
n = (θ0 − θ̂)′

1

n
a1ς
∗′
nMnς

∗
nb1(θ0 − θ̂) +

1

n
a2ς
∗′
nMnς

∗
nb2(θ0 − θ̂) +

1

n
ξ′nξn

p→ σ2
ξ0.
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Similarly, 1
n ξ̂
∗
nX2n(Γ0 − Γ̂)(δ0 − δ̂) = op(1) and 1

n (δ0 − δ̂)′(Γ0 − Γ̂)′X ′2nX2n(Γ0 − Γ̂)(δ0 − δ̂) = op(1). Thus,
1
n ξ̂
′
nξ̂n

p→ σ2
ξ0.

Terms in ΣIV and ΣBGIV have some common features, but the most complicated term we need to show

is
1

n
[a′ε̂′nGn(λ̂)′Gn(λ̂)ε̂nb− E(a′ε′nG

′
nGnεnb)] = op(1).

As ε̂n = εn + X2n(Γ0 − Γ̂), we have 1
n [a′ε̂′nGn(λ̂)′Gn(λ̂)ε̂nb − E(a′ε̂′nGn(λ̂)′Gn(λ̂)ε̂nb)] = op(1)12 from

the ULLN in Corollary 1 and 1
n [E(a′ε̂′nGn(λ̂)′Gn(λ̂)ε̂nb) − E(a′ε′nG

′
nGnεnb)] = op(1) from the equicon-

tinuity of 1
nE[a′ε′n(θ)Gn(λ)′Gn(λ)ε′n(θ)b]. These together complete the proof of 1

n [ε̂′nGn(λ̂)′Gn(λ̂)ε̂n −
E(ε′nG

′
nGnεn)] = op(1).

Proof of Claim 2. Consider the moments in ΣQML and ΣGMM . The most complicated term we need to

show is
1

n

n∑
i=1

ξ̂3
i,nGii,n(λ̂)Gi,n(λ̂)ε̂nb−

1

n

n∑
i=1

E[ξ3
i,nGii,nGi,nεnb] = op(1).

As we can express ε̂n = εn +X2n(Γ0 − Γ̂) and

ξ̂n = (λ0 − λ̂)Gn(X1nβ0 + εnδ0 + ξn) +X1n(β0 − β̂)−X2n(Γ0 − Γ̂)δ̂ + εn(δ0 − δ̂) + ξn

= M1nς
∗
nb1(θ∗0 − θ̂∗) + ξn

with θ∗ = (θ′, δ′Γ′)′, it is sufficient to show

1

n

n∑
i=1

[e′i,nM1nς
∗
nb1(θ∗0 − θ̂∗)]3Gii,n(λ̂)Gi,n(λ̂)ς∗nb2 = op(1); (C.7)

1

n

n∑
i=1

[e′i,nM1nς
∗
nb1(θ∗0 − θ̂∗)]2ξi,nGii,n(λ̂)Gi,n(λ̂)ς∗nb2 = op(1); (C.8)

1

n

n∑
i=1

e′i,nM1nς
∗
nb1(θ∗0 − θ̂∗)ξ2

i,nGii,n(λ̂)Gi,n(λ̂)ς∗nb2 = op(1); (C.9)

1

n

n∑
i=1

ξ3
i,nGii,n(λ̂)Gi,n(λ̂)εnb−

1

n

n∑
i=1

E[ξ3
i,nGii,nGi,nεnb] = op(1). (C.10)

Equations (C.7), (C.8), and (C.9) have some common features, so we will show (C.7) as an example. As

supi,n supλ∈Λ |Gii,n(λ)| = O(1) and θ∗0 − θ̂∗ = op(1), we only need to show

sup
λ∈Λ

1

n
|
n∑
i=1

(e′i,nM1nς
∗
na1)3Gi,n(λ)ς∗nb2| = Op(1).

12The expectation is with respect to εn only but not with respect to estimated parameters, such as λ̂. The expectation
function is then evaluated at the estimated parameters.
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It is sufficient to show

E

∣∣∣∣∣sup
λ∈Λ

1

n

n∑
i=1

(e′i,nM1nς
∗
na1)3Gi,n(λ)ς∗nb2

∣∣∣∣∣ ≤ sup
i,n

E

∣∣∣∣|e′i,nM1nς
∗
na1|3 sup

λ∈Λ
|Gi,n(λ)ς∗nb2|

∣∣∣∣
≤ (sup

i,n
||e′i,nM1nς

∗
na1||4)3 sup

i,n
|| sup
λ∈Λ
|Gi,n(λ)ς∗nb2|||4 = O(1).

The second inequality is from the Hölder’s inequality. For the equality, supi,n ||e′i,nM1nς
∗
na1||4 = O(1) is

directly from Claims C.1.6, C.1.7, C.2.5, and C.2.6, so we need to show supi,n || supλ∈Λ |Gi,n(λ)ς∗nb2|||4 =

O(1). As |Gi,n(λ)ς∗nb2| = |
∑∞
l=0 λ

lW l+1
i,n ς

∗
nb2| ≤

∑∞
l=0 |λ|l|W

l+1
i,n ς

∗
nb2|,

|| sup
λ∈Λ
|Gi,n(λ)ς∗nb2|||4 ≤

∥∥∥∥∥sup
λ∈Λ

∞∑
l=0

|λ|l|W l+1
i,n ς

∗
nb2|

∥∥∥∥∥
4

≤ sup
λ∈Λ

∞∑
l=0

|λ|l||ti,n(l + 1)||4.

As ||ti,n(m)||p ≤ mc3d0+2cmwCap under Assumption 4.1) and ||ti,n(m)||p ≤ Capc
m
wm

d0 under Assump-

tion 4.2) from Claims C.1.6 and C.2.5, together with supλ∈Λ |λ|cw < 1 from Assumption 3.2), we have

|| supλ∈Λ |Gi,n(λ)ς∗nb2|||4 < C, where C does not depend on i or n. Therefore, supi,n || supλ∈Λ |Gi,n(λ)ς∗nb2|||4 =

O(1).

To show equation (C.10), using similar arguments as those in Corollary 1, Claim C.1.6 and Claim C.2.5,

we have the uniform convergence that

sup
λ∈Λ

1

n

∣∣∣∣∣
n∑
i=1

ξ3
i,nGii,n(λ)Gi,n(λ)εnb−

n∑
i=1

E[ξ3
i,nGii,n(λ)Gi,n(λ)εnb]

∣∣∣∣∣ = op(1)

and by the equicontinuity of 1
n

∑n
i=1E[ξ3

i,nGii,n(λ)Gi,n(λ)εnb],

1

n

n∑
i=1

E[ξ3
i,nGii,n(λ̂)Gi,n(λ̂)εnb]−

1

n

n∑
i=1

E[ξ3
i,nGii,nGi,nεnb] = op(1).

Thus equation (C.10) is proved.

These together complete the proof

1

n

n∑
i=1

ξ̂3
i,nGii,n(λ̂)Gn(λ̂)ε̂nb−

1

n

n∑
i=1

E[ξ3
i,nGii,nGnεnb] = op(1).

Similarly, we can show 1
n

∑n
i=1 ξ̂

4
i,nGii,n(λ̂) − 1

n

∑n
i=1E(ξ4

i,nGii,n) = op(1). Therefore, if we replace θ0 with

a consistent estimator θ̂, εn with ε̂n = Zn −X2nΓ̂, and ξin with ξ̂in, then we have consistent estimators of

ΣQML and ΣGMM .
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